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Abstract

We consider (flat) Cauchy-complete GH space–times, i.e., globally hyperbolic flat Lorentzian man-
ifolds admitting some Cauchy hypersurface on which the ambient Lorentzian metric restricts as a com-
plete Riemannian metric. We define a family of such space–times—model space–times—including
four subfamilies: translation space–times, Misner space–times, unipotent space–times, and Cauchy-
hyperbolic space–times (the last family—undoubtful the most interesting one—is a generalization of
standard space–times defined by G. Mess). We prove that, up to finite coverings and (twisted) products
by Euclidean linear spaces, any Cauchy-complete GH space–time can be isometrically embedded
in a model space–time, or in a twisted product of a Cauchy-hyperbolic space–time by flat Euclidean
torus. We obtain as a corollary the classification of maximal GH space–times admitting closed
Cauchy hypersurfaces. We also establish the existence of CMC foliations on every model space–time.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Results concerning flat Lorentzian manifolds in the mathematical literature are mostly
devoted to the case ofclosedmanifolds (i.e. compact without boundary). And as a byproduct
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of this activity, the structure of closed flat manifolds has been elucidated in a quite satisfying
way: see, for example,[3] for a quick survey on this problem.

But the non-compact case remains essentially open and non-considered, with the notable
exception of the works related to Margulis space–times emerging from a question by Milnor
concerning the (non)solvability of discrete groups acting on Minkowski space (see also[3]).

On the other hand, there is an important and natural notion in Lorentzian geometry: the
global hyperbolicity. This notion is central in physics, in the area of classical General Rela-
tivity. And it is incompatible with compactness: a globally hyperbolic Lorentzian manifold
is never compact. Because of this physical background, besides the notational convenience
it provides, we call (flat) Lorentzian manifolds (flat) space–times.

A globally hyperbolic (abbreviation GH) space–time is a space–timeM admitting a
Cauchy hypersurface, i.e. a hypersurfaceSwhich:

- is spacelike (i.e., the Lorentzian metric restricts onSas a Riemannian metric),
- disconnectsM,
- intersects every unextendible nonspacelike curve (i.e., for which every tangent vector

has nonpositive norm) (seeSection 2.4for a more complete definition).

(M, S) is a maximalGH space–time (abbreviation MGH) if the only GH space–time
containingM and for whichS is still a Cauchy hypersurface, isM itself. A fundamental
theorem by Choquet-Bruhat–Geroch[12] states than every GH pair (M, S) can be extended
in a unique way to a maximal GH space–timeN in whichS is still a Cauchy hypersurface.

It is quite surprising that the classification of flat MGH space–times, which is the central
topic here, has not been previously systematically undertaken. Such a classification has its
physical interest, and even more, a mathematical one. It appears as a general extension of
Bieberbach’s theory to the Lorentzian context.

Actually, such a classification is not possible without some additional requirement: we
will only consider here Cauchy-complete GH space–times, i.e., GH space–times admitting
a Cauchy hypersurface on which the Lorentzian ambient metric restricts as acomplete
Riemannian metric. Among Cauchy-complete GH space–times, we distinguish the impor-
tant subfamily of Cauchy-compact ones, for which the Cauchy hypersurface is closed.
Cauchy-complete GH space–times which cannot be isometrically embedded in any bigger
Cauchy-complete GH space–times, with no additional restriction on Cauchy surfaces, is
absolutely maximal(abbreviation: AMGH space–times).

The most obvious examples of Cauchy-complete MGH space–times are simply quotients
ofMn itself by discrete groups of spacelike translations. We call these examplestranslation
space–times.

Next, there is another natural family that we callMisner space–times(seeSection 3.2):
there are quotients of the future inMn of a spacelike (n− 2)-subspaceP by an abelian
discrete group whose elements all admit as linear part a boost (or loxodromic element,
maybe trivial) acting trivially inP, and translation part inP.

There is also the family ofunipotent space–times, described inSection 3.3: let us briefly
mention here that each of these space–times is the quotient of domainΩ in Mn delimited
by one or two parallel degenerate hyperplanes by an abelian discrete group of unipotent
isometries ofMn.
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Finally, and maybe the most interesting one, we have the family of what we call
hereCauchy-hyperbolic space–times. In this family of examples, the linear partL : Γ →
SO0(1, n− 1) of the holonomy morphism will be injective, with image a discrete subgroup
of SO(1, n− 1) without torsion. Therefore, we considerΓ ≈ L(Γ ) directly as a discrete
subgroup of SO(1, n− 1). We moreover assumeΓ nonelementary, meaning that the orbits
of its action onH̄n−1 are all infinite.

We first consider the case whereΓ is a cocompact lattice of SO0(1, n− 1). Let Ω+
be the connected component of{Q < 0} geodesically complete in the future, andΩ− the
other connected component:Ω− is geodesically complete in the past. The action ofΓ

on Ω± is free and properly discontinuous: we denote byM±(Γ ) the quotient manifold.
Every level set{Q = −t2} ∩Ω± is Γ -invariant; it induces inM±(Γ ) a hypersurface with
induced metric of constant sectional curvature−1/t2. Recall that{Q = −1} is the usual
representant of the hyperbolic space, therefore, the flat Lorentzian metric onM±(Γ ) admits
the warped product form−dt2 + t2g0, whereg0 is the hyperbolic metric onΓ \ H

n−1. We
call these examplesradiant standard space–times. Observe thatM+(Γ ) (resp.M−(Γ )) is
geodesically complete in the future (resp. in the past), and that there is a time reversing
isometry between them.

In [16] or [2], it is shown that any representation of aΓ in Isom(Mn) admitting as
linear part an embedding onto a cocompact lattice of SO(1, n− 1) preserves some future
complete—and also a past complete-convex domain ofMn, in such a manner that the
quotients of these domains byρ(Γ ) are Cauchy-compact AMGH space–times. These space–
times are called by Mess and Anderssonstandard space–times.

When the linear partΓ is still a nonelementary discrete subgroup, but not cocompact in
SO(1, n− 1), the question is slightly more delicate. InSection 4, we extend the family of
standard space–times to a more general one: the family of Cauchy-hyperbolic space–times
(Definition 4.18). Briefly speaking, they are still quotients of semicomplete convex domains
of Mn by discrete groups of isometries admitting as linear part a discrete subgroup. But,
even in the radiant case, i.e. whenρ(Γ ) preserves a point inMn, let us say, the origin, the
associated Cauchy-hyperbolic space–time is not always the quotientρ(Γ ) \Ω± as above,
but most often some bigger space–time.

As a last comment on these examples, inSection 4.4.2we prove that whenΓ is a
convex cocompact Kleinian group, then any discrete subgroup of Isom(Mn) admittingΓ
as linear part preserves a semicomplete domain ofMn, i.e. is the holonomy group of
some Cauchy-hyperbolic space–time. This claim is not as trivial as it may appear at first
glance: inProposition 4.22, we exhibit a (nonuniform) latticeΓ in SO0(1,2) such that, a
representationρ : Γ → Isom(Mn) for whichL ◦ ρ is the identity morphism can preserve
a semicomplete convex domain if and only if it is radiant, i.e. preserves a point inMn.
This fuchsian groupΓ is nothing but the group associated to the 3-punctured conformal
sphere.

Convex cocompact Kleinian groups form an important family including cocompact
Kleinian groups or Schottky groups, which are essentially the only examples appearing
in the physical literature, except geometrically finite Kleinian groups (convex cocompact
Kleinian groups can be defined as geometrically finite Kleinian groups without parabolic
elements). The correct way to extend this result to geometrically finite Kleinian groups is
an interesting question, even in the 2+ 1-dimensional case.
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Before stating the classification’s theorems, let us indicate a natural way to produce GH
space–times from other ones: given a flat GH space–timeM, a flat Euclidean manifold
N, and a representationr : π1(M) → Isom(N), the total spaceB of the suspension bundle
overM with fiber N and monodromyr is naturally equipped with a flat Lorentzian metric
which is still globally hyperbolic. The resulting space–timeB from this construction, which
is defined with more details inSection 5.2, is called the twisted product ofM by N with
monodromyr. The case whereN is an Euclidean linear space and the representationr admits
a global fixed point inN is particularly pleasant: we say then thatB is a linear twisted product
overM.

We now express the main theorem of this paper, essentially stating that the examples
above provide the complete list of flat Cauchy-complete MGH space–times. In the following
statement, atame embeddingis an isometric embedding inducing an isomorphism between
fundamental groups.

Theorem 1.1. Up to finite coverings and linear twisted products, every Cauchy-complete
globally hyperbolic flat space–time can be tamely embedded in an absolutely maximal
globally hyperbolic space–time which is a translation space–time, a Misner space–time, a
unipotent space–time, or the twisted product of a Cauchy-hyperbolic flat GH space–time
by an Euclidean torus.

The Cauchy-compact case deserves its own statement.

Theorem 1.2. Up to finite coverings, every maximal Cauchy-compact globally hyperbolic
flat space–time is isometric to a translation space–time, a Misner space–time, or the twisted
product of a standard space–time(Cauchy-compact Cauchy-hyperbolic GH space–time)
by an Euclidean torus.

The proofs of these theorems are written here in a quite intricate way, since it involves
particular subcases to consider separately. Hence, we collect along the text all the elements
of the proof, and then indicate inSection 11the way to reconstruct from these intermediate
results the complete proofs of the theorems.

Theorem 1.1actually is not a full classification theorem: indeed, in a given MGH space–
time we can embed many different MGH space–times-consider, for example, the Minkowski
space itself! But, such a complete classification of Cauchy-complete GH space–times is
not only unrealistic, it is furthermore useless when we adopt the point of view that the
object of study here is the holonomy groupΓ . In other words, our essential procedure is
to associate to suitable discrete subgroups of Isom(Mn) some invariant domains ofMn

(regular convex domains) on which the dynamical behaviour of the group preserves some
causality properties.

As a corollary ofTheorem 1.2, we obtain that closed Cauchy hypersurfaces of globally
hyperbolic flat space–times are homeomorphic to finite quotients of products of tori with
hyperbolic manifolds. This generalizes[18] in any dimension, without the superfluous
three-dimensional topological arguments used in[18].

There are other works related to the present work: in[19], Scannell classified Cauchy-
compact maximal globally hyperbolic space–times with constant sectional curvature+1:
the topological type of the Cauchy hypersurfaceSbeing fixed, there is a 1− 1 correspon-
dence between MGH space–times and Riemannian flat conformal structures onS. Maximal
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globally hyperbolic Cauchy-compact space–times with constant curvature−1 of dimen-
sion 2+ 1 are classified in[16]. We should mention that results in[18,16]are not stated in
the terminology of GH space–times, but our presentation follows immediately from their
works.

In [2], Andersson classified flat Cauchy-compact MGH space–times, but with the initial
hypothesis that Cauchy hypersurfaces have hyperbolic type. He proves also that these space–
times all admit foliations by constant mean curvature hypersurfaces (abbreviation, CMC
foliation), which is unique in a given space–time. Thanks toTheorem 1.2, we can extend
this result to the elementary case. It is done inSection 12.

The present paper includes also a generalization to any dimension of the characterization
of “spacelike regions” for isometries ofMn made in[10] (“spacelike regions” of[10] are
called here achronal domains).

2. Preliminaries

2.1. Space–times

By space–time, we mean here in general a (non-closed) oriented and chronologically
oriented Lorentzian manifold. Our convention here is that Lorentzian metrics have signature
(−,+, . . . ,+). Tangent vectors are calledspacelike, timelike, lightlike if their norms are
respectively positive, negative, null. A curve in the space–time is nonspacelike if its tangent
vectors have nonpositive norm. In the same spirit, a curve with timelike tangent vectors is
called timelike, it has to be thought as a potential trajectory of a particle. Its proper time is
defined by

Proper-time(c) =
∫ √

−〈∂tc|∂tc〉.

Since the space–time is chronologically oriented, every nonspacelike curve admits a
canonical orientation towards its future.

A space–time is geodesically complete if every timelike geodesic admits geodesic pa-
rameterizations by ]−∞,+∞[. It is geodesically complete in the future(resp., in the past)
if every future oriented (resp. past oriented) timelike geodesic ray admits a geodesic param-
eterization by ]0,+∞[. Finally, ageodesically semicompletespace–time is a space–time
which is either geodesically complete in the future or geodesically complete in the past.

2.2. Minkowski space

We denote here byMn the Minkowski space. We stress out that we consider hereMn

endowed with an orientation and a chronological orientation.
The Lorentzian quadratic form onMn is denoted by〈·|·〉; and the Minkowski norm is

|x|2 = 〈x|x〉 (the notation|x| will be reserved to spacelike vectors). For any affine subspace
E of Mn, we denote byE⊥ the orthogonal ofE-this is a subspace of the underlying linear
space. WhenE is a lightlike affine line,E⊥ will also abusively denote the unique degenerate
affine hyperplane containingE with direction orthogonal toE.
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LetL : Aff( n,R) → GL(n,R) be the usual linear part morphism for the group of affine
transformations ofMn. The isometry group of the (unoriented) Minkowski space is the
space of affine transformations with linear part in O(1, n− 1), but since here the consider
Mn as oriented and chronologically oriented, the term isometry will be reserved to affine
transformations admitting linear parts in the identity component SO0(1, n− 1) (also called
the orthochronous component). We denote by Isom(Mn) the group of isometries ofMn.

2.3. Flat space–times as geometric manifolds

Truly speaking, all space–times considered in this work are flat, i.e., locally modeled
on the Minkowski space. In other words, in the language of geometric structures (see e.g.
[15]), they are (G,X)-manifolds withX = Mn andG = Isom(Mn).

We will need only few facts on geometric structures: the existence of the developing
map and the holonomy morphism (seeSection 8).

2.4. Globally hyperbolic space–times

A space–timeM is globally hyperbolic(abbreviation GH) if there is a proper time func-
tion t : M → R such that every fibert−1(t0) is spacelike. Moreover, it is required that
any nonspacelike curve inM can be extended to another one such that the restriction of
t on this extended curve is a diffeomorphism onto the entiret(M). In other words, every
fiber of t is aCauchy hypersurface, meaning precisely that this is a hypersurface intersect-
ing every unextendible nonspacelike curve inM. There are other equivalent definitions of
global hyperbolicity, see[4]. Observe thatt : M → R is necessarily a locally trivial, thus
trivial fibration: M is diffeomorphic toS × R. Observe also that GH space–times admit
chronological orientations.

Choquet-Bruhat–Geroch’s work[12] implies that every GH manifold admits a unique
maximal globally hyperbolic extension. Let us be more precise: letSbe a Cauchy hypersur-
face in a globally hyperbolic space–timeM. A S-embedding ofM is an isometric embedding
f : M → M ′ whereM ′ is a space–time, such thatf (S) is still a Cauchy hypersurface in
M ′. Actually, this notion does not depend on the choice of the Cauchy hypersurface: ifS,
S′ are Cauchy hypersurfaces inM, an isometric embeddingf : M → M ′ is aS-embedding
if and only if it is aS′-embedding. Therefore, we call such a map aCauchy embedding.
Now, a GH space–timeM is said maximal (abbreviation MGH) if any Cauchy embedding of
M into some GH space–timeN is necessarily surjective. Choquet-Bruhat–Geroch’s result
can now be precisely stated: every GH space–timeM admits a Cauchy embedding in a
MGH space–time. Moreover, this maximal globally hyperbolic extension is unique up to
isometries.

Remark 2.1. The maximal globally hyperbolic extension of a flat globally hyperbolic
space–time is flat. Observe also that if the space–time is analytic, with analytic Lorentzian
metric, then it is flat as soon as it contains a flat open set. In the definition above the time
function may have low regularity (Lipschitz regularity is enough), but it can be proved
that any GH space–time admits a smooth time function: we express here our gratitude to
the referee for indicating the reference[7] where these regularity properties are discussed,
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with a valuable report on the history of these questions. Anyway, the regularity of Cauchy
hypersurfaces is not relevant in the present work.

Remark 2.2. MGH space–times may admit nonsurjective isometric embeddings in bigger
MGH space–times. Consider the following example: inMn, letΩbe a connected component
of the negative cone{Q < 0}. Then,S = Ω ∩ {Q = −1} is a Cauchy hypersurface forΩ.
Observe thatΩ is MGH, but nontrivially embedded inMn! The point is thatS is not a
Cauchy hypersurface inMn, therefore, the inclusionΩ ⊂ Mn is not a Cauchy embedding.

2.5. Cauchy-complete, Cauchy-compact GH space–times

A GH space–time isCauchy-completeif it admits aC1 Cauchy hypersurface where the
ambiant Lorentzian metric restricts as a complete Riemannian metric. This notion depends
on the choice of the Cauchy hypersurface: for example, in the two-dimensional Minkowski
space, i.e. the plane equipped with the metric dx dy, Cauchy hypersurfaces are graphs
y = f (x) of strictly increasing diffeomorphisms fromR ontoR, and such a graph is complete
if and only if the integrals of the square root off ′ on ]−∞,0] and [0,+∞[ are infinite.

Among Cauchy-complete space–times, there is a remarkable natural family: GH space–
times withclosedCauchy hypersurfaces (we know that in general, if a space–time admits a
closed Cauchy hypersurface, then all its Cauchy surfaces are closed-indeed, they are home-
omorphic one to the other). We call such a space–timeCauchy-compactGH space–time
(abbreviation CGH). It is worth to emphasize this family, since our results are much easier
to state in this situation; keeping in mind our analogy with Bieberbach’s theory on com-
plete Euclidean manifolds, Cauchy-compact space–times correspond to closed Euclidean
manifolds.

Remark 2.3. In the definition of Cauchy-completeness the Cauchy hypersurface isC1. We
don’t know if in general Cauchy-complete space–times all admit smooth complete Cauchy
hypersurfaces.

Remark 2.4. We say that a flat Cauchy-complete GH space–timeM is absolutely maximal
(abbreviation AMGH) if any isometric embedding into another Cauchy-complete flat GH
space–time is surjective. Cauchy-compact MGH space–times are automatically absolutely
maximal. Indeed, any spacelike hypersurface in a given CGH space–time is a Cauchy
hypersurface.

3. Elementary Cauchy-complete AMGH space–times

3.1. Translation space–times

These are the easiest and more obvious examples, includingMn itself: they are the
quotients of the entireMn by a group of translations by spacelike translation vectors. There
are orthogonal sumsS ⊕ R, whereS is a flat Euclidean cylinderTk × R

n−k−1 (whereT
k

is a flat torus of dimensionk), andR is equipped with the metric−dt2.
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3.2. Misner flat space–times

Consider the metric 2 dx dy + dz2 on R
n, wherez denotes an element ofR

n−2, and an
isometryγ0(x, y, z) �→ (et0x,e−t0y, z) (t0 �= 0). The one-dimensional Misner space–time
is the quotient ofΩ = {xy < 0, x > 0} by the group generated byγ0. Consider the pure
loxodromic elementγ0 above as the time 1 of a 1-parameter subgroupγt

0, and letG0 be the
subgroup of Isom(Mn) formed by elements with linear parts inγt

0 and translations parts in
the subspace{x = y = 0}. This an abelian Lie group isomorphic toR

n−1, and the orbits of
G0 in Ω are all spacelike. IfΓ is any discrete subgroup ofG0, the quotientΓ \Ω is a flat
globally hyperbolic space–time, that we callMisner space–time.

Observe that the linear partL(Γ ) is not necessarily discrete: it can be a dense subgroup
of γt

0. Observe also that we could have selectedΩ = {xy < 0, x < 0} too; but the two
choices provide isometric space–times (up to a time reversing isometry), which are both
geodesically semicomplete.

As a last comment on this example, we should add a particularly comfortable coordinate
system: parameterizeΩ by x = eη+ν, y = −eη−ν. The flat metric 2 dx dy + dz2 on Ω in
these coordinates is

e2η(−2 dη2 + 2 dν2 + e−2η dz2).

The action ofG0 in this coordinate system is the action by translations on thez, ν
coordinates.

3.3. Unipotent space–times

Consider once more a coordinate system (x, y, z) with x, y in R andz in R
n−2, where

the metric is given by 2 dx dy + dz2. We consider the unipotent part of the stabilizer of the
lightlike hyperplane{y = 0}. This is the groupA with elements of the form:

gu,v,µ(x, y, z) = (x+ µ− 〈z|v〉 − 1
2y|v|2, y, z+ u+ yv),

whereuandv are elements ofRn−2, andµ a real number. The orbits ofA are the degenerate
hyperplanesy = Cte. Observe thatA is not abelian, but a central extension ofR by R

2n−4:
the operation law is:

gu,v,µ ◦ gu′,v′,µ′ = gu+u′,v+v′,µ+µ′−〈u′|v〉

Select nown− 2 real numbersλ1 ≤ λ2 ≤ · · · ≤ λn−2, and an orthogonal basis
e1, e2, . . . , en−2 of the Euclidean spaceRn−2. Then, when (t1, . . . , tn−2) describe the entire
R

n−2, thegu,v,µ with u =∑
tiei, v =∑

tiλiei andµ = −∑ t2i (λi/2) describe an abelian
subgroupA of A isomorphic toRn−2.

The action is given by

(t1, . . . , tn−2) · (x, y,
∑

ziei)

=
(
x−

∑ λi

2
t2i −

∑
λiziti − y

2

∑
λ2
i t

2
i , y,

∑
(zi + ti(1+ yλi))ei

)
.
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The domain ofMn where the orbits ofA are spacelike isΩ(A) = {(x, y, z)/1+ yλi
�= 0 ∀i}.

Defineyi = −1/λi (yi = ∞ if λi = 0), andy0 = −∞ ≤ y1 ≤ · · · yn−2 ≤ yn−1 = +∞.
Then, a connected componentΩ of Ω(A) is the set of (x, y, z) with yj < y < yj+1 for some
index j.

Consider such a connected component, and a discrete subgroupΓ of A. Observe that the
boundary ofΩ is the union of one or two lightlike hyperplanes{y = Cte}.

Let f : I =]yj, yj+1[→ R be any (strictly) increasing function. Wheny describesI,
(f (y), y,0) describes a spacelike curveL in Ω. The saturation ofL under the action ofA is
the set of (x, y, z) with:

- z =∑
ti(1+ λiy)ei,

- x = f (y) −∑
(λi/2)t2i − (y/2)

∑
λ2
i t

2
i .

Thus, it is the graph of the functionΦ(y, z) = f (y) + (1/2)
∑

z2
i /(yi − y) (with the

conventionsz =∑
ziei, andz2

i /(yi − y) = 0 if yi = ∞). Of course,Sf is a spacelikeA-
invariant hypersurface. More precisely, the Minkowski norm 2 dx dy +∑

dz2
i induces on

Sf the metric:

2f ′(y) dy2 +
∑(

dzi − zi dy

y − yi

)2

with the conventionzi dy/(y − yi) = 0 if yi = 0. If ζi = zi/(y − yi) (convention:ζi = zi if
yi = ∞), the expression in the (y, ζ1, . . . , ζn−2) coordinates of the metric onS is (with the
convention (y − yi) dζi = dζi if yi = ∞):

2f ′(y) dy2 +
∑

(y − yi)
2 dζ2

i .

This is time now to specify the functionf: let y0 be any element ofI, anda : I →
]1,+∞[ any smooth function such that the integrals

∫ y0
yj

a(y) dy and
∫ yj+1
y0

a(y) dy are

both infinite. Choosef (y) = ∫ y

y0
a2(y) dy. We claim that for such af, the metric onSf is

complete: if not, there is a smooth pathc : [0,+∞[→ Sf with finite length and escaping
to infinity. We writec(t) = (y(t), ζ1(t), . . . , ζn−2). Since the length is finite, the integrals∫ +∞

0

√
2f ′(y(t))|y′(t)|dt and

∫ +∞
0

√∑
(y(t) − yi)2ζ′i(t)2 dt are both finite. The finiteness of

the first integral implies the finiteness of
∫ +∞

0 a(y(t))y′(t) dt. It follows that they-coordinate

remains in a compact subinterval ofI. But, then, the integral
∫ +∞

0

√∑
ζ′i(t)2 dt is bounded.

It follows thatc(t) stay in a compact domain ofSf : contradiction.
Hence,Sf is a complete spacelike hypersurface.
We now prove thatSf is a Cauchy hypersurface forΩ. Clearly, the complement ofSf

in Mn has two connected components, one containing{y = yj}, the other containing{y =
yj+1}. Now, a nonspacelike geodesic inΩ is the intersection betweenΩ and a nonspacelike
geodesic lined of Mn. There are two cases to consider: if the direction ofd is the isotropic
direction∆0, thend must intersectSf sinceSf is a graphx = Φ(y, z). If not, d intersect
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the two lightlike hyperplanes{y = yj}, {y = yj+1}. Then, it must intersectSf sinceSf
disconnects these hyperplanes.

Hence, any nonspacelike geodesic intersectSf : this is a criterion proving thatSf is
indeed a Cauchy hypersurface.

It follows that the quotient ofΩ by Γ is globally hyperbolic and Cauchy-complete.
We call such a space–timeunipotent space–time. Unipotent space–timesneverhave closed
Cauchy hypersurfaces, since theA-invariant coordinatey defines a submersion from the
Cauchy hypersurface intoR. Observe also that unipotent space–times are not uniquely de-
fined by their holonomy: indeed, the sameΓ may be extended to aA ≈ R

n−2 in different
ways. Moreover, even whenA is fixed, different choices of connected components ofΩ(A)
lead to nonisometric unipotent space–times. Finally, unipotent space–times are not geodesi-
cally semicomplete, except those corresponding to connected componentsΩ with only one
boundary hyperplane.

4. The non-elementary GH space–times: Cauchy-hyperbolic space–times

4.1. The Penrose boundary

In this section, we describeJ, the space of lightlike (or degenerate) affine hyperplanes of
Mn. We represent as usualMn asR

n equipped with the metric−dx2
0 + dx2

1 + · · · + dx2
n−1.

We will also use the Euclidean metric dx2
0 + dx2

1 + · · · + dx2
n−1; the norm of a vectorv of

R
n for this metric will be denotedN(v).
Denote byS the space of linear lightlike hyperplanes. It admits a natural 1− 1-

parameterization by vectorsv of R
n for which N(v) = 1, |v| = 0, andv oriented to-

wards the future, i.e.,x0 > 0. We denote byS+ the space of such vectors. A vec-
tor in S+ is completely characterized by itsx1, . . . , xn−1 coordinates which satisfy∑

x2
i = 1/2 (observe that necessarilyx0 = 1/2)). Hence,S+ is naturally identified with

the (n− 2)-sphere. The ambient Lorentzian metric onMn induces on{N = 1, | · | = 0}
a non-degenerate Riemannian metric, and an easy computation proves that this met-
ric is nothing but the usual round metric on the (n− 2)-sphere. In the same vein,
S can also parameterized byS−, the space ofpast orientedlightlike vectors with
N-norm 1.

The group SO0(1, n− 1) acts naturally onS but it does not preserve the “round met-
ric” we have just defined-mainly because it does not preservesN = 1. Actually, for g in
SO0(1, n− 1), and identifyingS± with the space ofv’s as above, the action ofg on S
mapsv on [g] · v = g(v)/N(g(v)). This action preserves theconformal classof the metric;
in particular, it preserves the angles. As a matter of fact,S± equipped with this conformal
class is the usual conformal sphere, and elements of SO0(1, n− 1) act on it as M̈obius
transformations.

The spaceJ admits a natural fibration over eachS±: this map is just the map asso-
ciating to the affine hyperplane its direction. We denote it byδ± : J→ S±. Now, for
any elementP of J with v = δ±(P), the scalar product〈v|p〉 does not depend on the
point p of P: we denote it byν±(P). Then, the product mapδ± × ν± : J→ S± × R is
one-to-one.
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Remark 4.1. The±-ambiguity means that we actually have two natural identifications
of J with the product of the conformal sphere by the real line. We will indicate which
of these identifications mapsδ± × ν± is considered by denoting the space of lightlike
hyperplanes byJ+ or J−. Alternatively, we can adopt the point of view thatJ+ (resp.
J−) is the space of future complete (resp. past complete) half spaces bounded by lightlike
hyperplanes.

Finally, Isom(Mn) acts naturally onJ. When we use the identificationJ ≈ J+ ≈ S× R,
the action of an isometryg(x) = L(g)x+ τ is expressed by:

g · (v, s) = ([L(g)] · v, a(g, v)s+ b(g, v)),

where

[L(g)] · v = L(g)v

N(L(g)v)
, a(g, v) = 1

N(L(g)(v))
, b(g, v) = 〈τ|L(g)v〉

N(L(g)v)

Observe that for the other identificationJ ≈ J−, the action would be expressed in a
similar form, with the samea(g, v), but with an oppositeb(g, v). Observe also that the
factor 1/N(L(g)v) is common to thev ands components. Hence, we have the following
proposition:

Proposition 4.2. EquipJ+ ≈ S+ × R with the product metric of the round metric on
the sphereS+ and any Euclidean metric onR. Let g be a linear isometry ofMn, i.e.,
admitting a trivial translation partτ. Then, the domain inJ+ where the action of g is
expanding is precisely the preimage underδ+ of the domain ofS+ where the action of L(g)
is expanding.

Remark 4.3. The title of this section is justified by the fact thatJ± are nothing but the
regular parts of the Penrose boundary of Minkowski space as usually defined in general
relativity (and usually with the same notation, see e.g.[13]).

4.2. Regular convex domains

LetΛ be any subset ofJ. We will always assume thatΛ contains at least one point. For
any elementP of Λ, letP+ be the future ofP, andP− the past ofP. These are half-spaces,
admitting bothP as boundaries. Ifv = δ+(P) ands = ν+(P), P+ (resp.P−) is the domain
of pointsp in Mn for which 〈v|p〉 − s is negative (resp. positive).

Definition 4.4. The future complete (resp. past complete) convex set defined byΛ is the
intersection:

Ω+(Λ) =
⋂
P∈Λ

P+
(

resp.Ω−(Λ) =
⋂
P∈Λ

P−
)
.

If Λ contains at least two elements, thenΩ±(Λ), if nonempty, is regular.



134 T. Barbot / Journal of Geometry and Physics 53 (2005) 123–165

We first collect some straightforward observations:

- Ω±(Λ) is an convex set.
- Ω+(Λ) is (geodesically) complete in the future, andΩ−(Λ) is complete in the past. They

are disjoint one from the other.

Definition 4.5. If Ω+(Λ) (resp.Ω−(Λ)) is nonempty and open, then it is called a fu-
ture (resp. past) regular convex domain. The setΛ is then said future regular (resp. past
regular).

This definition of regular convex domains is completely equivalent to the definition given
by Bonsante (see[8], Definition 4.1), but it is essential for our purposes to relate it with
closed subsets ofJ.

Lemma 4.6. If Λ̄ is the closure inJ of Λ, thenΩ±(Λ̄) contains the interior ofΩ±(Λ).

Proof. Let x be a point in the interior ofΩ+(Λ). Assume thatx does not belong toΩ+(Λ̄).
Then, for some element (v, s) of Ω+(Λ̄), we have〈x|v〉 ≥ s. On the other hand, for any
sequence (vn, sn) in Λ converging to (v, s), we have〈x|vn〉 < sn. At the limit, we obtain:
〈x|v〉 = s. But, sincex is in the interior ofΩ+(Λ), there is a pointy in the interior of
Ω+(Λ) nearx for which 〈y|v〉 > s. Apply once more the argument above toy: we obtain a
contradiction. �
Corollary 4.7. If Λ is future regular, then its closureΛ̄ is future regular too, andΩ+(Λ) =
Ω+(Λ̄).

Proof. The inclusionΩ+(Λ̄) ⊂ Ω+(Λ) is obvious. Hence, the corollary follows immedi-
ately fromLemma 4.6. �
Lemma 4.8. If Λ is closed, thenΩ+(Λ) is open(possibly empty).

Proof. Assume the existence of some elementxbelonging toΩ+(Λ), but not to its interior.
Then, there is a sequence of elementsxn in Mn converging tox, but not belonging to
Ω+(Λ). It means that for everyn, there is an elements (vn, sn) in Λ for which〈xn|vn〉 ≥ sn.
By compactness ofS, we can assume that the sequencevn converges to somev. Sincex
belongs toΩ+(Λ), we have:〈x|vn〉 < sn. It follows thatsn converges to〈x|v〉. But sinceΛ
is closed, it must contain the limit point (v, 〈x|v〉). This is a contradiction sincex is assumed
to belong toΩ+(Λ). �
Lemma4.9. LetΛ be a subset ofJwith future regular closure. Then,Ω+(Λ̄) is the interior
of Ω+(Λ).

Proof. According toLemma 4.6,Ω+(Λ̄) contains the interior ofΩ+(Λ). But it is obviously
contained inΩ+(Λ), and, according toLemma 4.8, it is open. The lemma follows. �

Thanks toCorollary 4.7and Lemma 4.8, we can define regular convex domains as
nonemptyconvex sets associated toclosedsetsΛ in J not reduced to one point (observe
that the similar statements for past regular domains are evidently valid).

Proposition 4.10.A closed subset ofJ is future regular(resp. past regular) if and only if
there is some real number C such that, for every(v, s) in Λ, the second component s is less
than C(resp. bigger than C).
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Proof. Assume thatΛ is contained in a domain{s > C}. Then,{s = C} is a family of
lightlike hyperplanes tangent to the future cone of some pointx satisfying〈x|v〉 = C for
every future oriented lightlikev satisfyingN(v) = 1. In particular,〈x|v〉 < s for every (v, s)
in Λ:x belongs toΩ+(Λ) which therefore is nonempty.

Inversely, ifx belongs toΩ+(Λ), then, for every (v, s) in Λ, we have〈x|v〉 < s. SinceS
is compact,〈x|v〉 admits a lower bound independent fromv. The proposition follows (the
past regular case is completely similar). �
Corollary 4.11. Λ is future regular and past regular if and only if it is compact.

In the following, we state many results proved in[8] about thecosmological time of
Ω±(Λ), without any attempt to provide proofs. We just suggest to the reader to keep in
mind the similar situation in Euclidean space when is considered the distance function to
some convex set.

For any pointp in Ω+(Λ), consider every future oriented timelike curve starting from
a point in∂Ω+(Λ) and ending atp. The proper times of all these curves are uniformly
bounded: letT (p) be the supremum value of these proper times. There is a uniqueπ(p) in

∂Ω+(Λ) for which T (p) is equal to−
√
|p− π(p)|2; in other words, the straight segment

fromπ(p) top is the unique timelike curve joiningpand∂Ω+(Λ) with proper time realizing
T (p). The functionT : Ω+(Λ) → R

+∗ is aC1-convex function (Proposition 4.3 in[8]). The
level setsSt = T−1(t) are convex spacelike hypersurfaces (Corollary 4.5 in[8]); actually,
the direction of the tangent space toSt at some pointp is the orthogonal ofp− π(p). Hence,
n(p) = (p− π(p))/

√−〈p− π(p)|p− n(p)〉 is the normal vector toSt atp pointing in the
future. For this reason, we calln : St → H

n−1 the Gauss map. Moreover, Corollary 4.5
expresses much more:S(p+ εn(p)) = S(p) + ε. Thus, from one level set, let us say,S1,
and the Gauss mapn on it, we can reconstruct all other level sets.

Proposition 4.12. The Gauss mapn : St → H
n−1, whereH

n−1 is equipped with its usual
hyperbolic metric is1/t-Lipschitz.

Proof. Select any 0< ε < t. Whenp describesSt , thenq(p) = p− ε(p)n(p) describe
St−ε, andn(q(p)) = n(p). SinceT is C1 and has spacelike fibers,St admits an induced
Riemannian metric, and for anyp, p′ in St , the distance between them is the infimum of∑N−1

i=0 |pi+1 − pi| whenp0, . . . , pN describe all the finite sequences inSt with p0 = p,
pN = p′. For such a sequence, we have:

|pi+1 − pi|2 = |q(pi+1) − q(pi)|2 + ε2|n(q(pi+1)) − n(q(pi))|2 + 2ε〈q(pi+1)

− q(pi)|n(q(pi+1)) − n(q(pi))〉.
The convexity ofSt−ε implies the positivity of〈q(pi+1) − q(pi)|n(q(pi+1)) − n(q(pi))〉.

Hence:

|n(pi+1) − n(pi)|2 = |n(q(pi+1)) − n(q(pi))|2 ≤ 1

ε2
|pi+1 − pi|2.

Sinceε can be selected arbitrarily neart, the proposition follows. �
Corollary 4.13. EverySt is complete.
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Proof. SinceSt is Riemannian, completeness notions are all equivalent. Lets �→ p(s) be
an incomplete geodesic inSt defined on [0, s∞[, parameterized by unit length. According to
Proposition 4.12, s �→ n(c(s)) must converge inHn−1 to some limit pointn∞. We select a
coordinate system onMn so that this limit vector is (1,0, . . . ,0) and such that the Minkowski
norm is−dx2

0 + dx2
1 + · · · + dx2

n−1. For some smallα, every tangent vector∂tc(t) with
s− α < s < s∞ hasx0-component less than, let us say, 1/2. It follows that the orthogonal
projection onP0 = {x0 = 0} of the geodesicc has finite length for the usual Euclidean
metric ofP0. Hence,c(s) has a limit pointc∞ in P0. We claim that the vertical line above
c∞, like any timelike line inMn, intersects∂Ω+(Λ): indeed, it must enter in the future cone
of every point inΩ+(Λ). SinceΩ+(Λ) is geodesically complete in the future, the vertical
line must thus intersectΩ+(Λ). On the other hand, it cannot be entirely contained inΩ+(Λ)
since it intersects every degenerate hyperplanes, and thus, every element ofΛ.

From the geodesic completeness in the future ofΩ+(Λ), it follows now that the vertical
line intersectsSt at one and only one pointp∞. The initial geodesic can then be completed
on [0, s∞] by c(s∞) = p∞. �

Finally, as it is proved in[8], Lemma 4.9, everySt is a Cauchy hypersurface forΩ(Λ).
Thus, we have the following proposition.

Proposition 4.14. Future complete regular convex domains are globally hyperbolic
Cauchy-complete, admitting as Cauchy hypersurfaces the level sets of the cosmological
time function.

Remark 4.15. We did not systematically state all the similar results for past complete
regular convex domains, but of course they are true.

We also could have written this section in a slightly different way, by defining future (resp.
past) regular convex domains as defined by closed subsets ofJ+ (resp.J−) (seeRemark 4.1),
but it is useful for the next section to stress out that these closed subsets arise from closed
subsets in the same spaceJ.

4.3. Groups preserving regular convex domains and Cauchy-hyperbolic space–times

In the first part of this section,Γ is a discrete subgroup of Isom(Mn).

Proposition 4.16. If Γ preserves a future complete regular convex domainΩ, then, the
action ofρ(Γ ) onΩ is properly discontinuous. If moreoverΓ is torsionfree, then this action
is free, and the quotientΓ \Ω is a Cauchy-complete semicomplete GH space–time.

Proof. According to the preceding section,Ω is globally hyperbolic, with a regular
cosmological time functionT : Ω →]0,+∞[. This function isΓ -invariant. The action
of Γ on every level setSt is isometric for the induced Riemannian metric. It follows that
the action onΩ is properly discontinuous. Observe that an element ofΓ is trivial as soon
as its action on a level setSt is trivial. Indeed, for anyx in such aSt , γ is an isometry
of Mn which is trivial on the spacelike hyperplaneTxSt : since it preserves chronological
orientation, it follows thatγ is trivial.

Assume now thatγ admits a fixed pointx in Ω. Then, since its action onSt with t = T (x)
is isometric, and sinceΓ is discrete, it follows thatγ has finite order when restricted toSt .
According to the above,γ itself has then finite order. Hence, ifΓ is torsionfree, the action
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is free. The quotient spaceΓ \Ω is then a space–time, admitting the cosmological time
function induced byT expressing it as a GH space–time. The level sets of this time function
are Cauchy hypersurfaces which are quotientsΓ \ St : the induced Riemannian metric is
complete. �

From now,Γ denotes a discrete subgroup of SO0(1, n− 1) without global fixed point
on H̄

n−1. Let ρ : Γ → Isom(Mn) be a morphism such thatL ◦ ρ is the identity map. We
say thatρ is future admissible(resp. past admissible) ifρ(Γ ) preserves a future complete
(resp. past complete) regular convex domain.

According toProposition 4.16, admissible representations produce Cauchy-complete
GH space–times. We want to associate to every such representation amaximalGH space–
time; it will be provided by the following proposition. Before stating the proposition, it is
maybe convenient for some readers to recall that a fixed point of a diffeomorphism is said
repulsiveif the derivative of the diffeomorphism at this fixed point is expanding, i.e., the
inverse of the derivative has norm less than 1.

Proposition 4.17. For any admissible representationρ, the closure of the set of repulsive
fixed points inJ of loxodromic elements ofρ(Γ ) is aρ(Γ )-invariant subsetΛ(ρ) contained
in any closedρ(Γ )-invariant subset ofJ.

Proof. Consider an admissible representationρ, preserving a closed subsetΛ. The fibration
δ : J→ S is Γ -equivariant, where theΓ -action onS is its usual conformal action on
the sphere. The dynamic of (nonelementary) discrete subgroups of SO0(1, n− 1) on the
conformal sphere is well-known: there is a closed subsetΛ̂, the limit set, contained in
everyΓ -invariant closed subset—in particular, in the closure ofδ(Λ). It is also well-known
that Λ̂ is the closure of repulsive fixed points of loxodromic elements ofΓ . Let γ such
a loxodromic element ofΓ , andv0 the element ofS corresponding to the repulsive fixed
point ofγ. We consider herev0 as a future oriented lightlike vector inMn with N-norm 1,
then,v0 is aγ eigenvector, with eigenvalue 0< λ < 1. The bassin of repulsion ofx0 for
ρ(γ) contains some open subset of the formδ−1(U), whereU is some open neighborhood
of v0 in S. Then,U contains some element ofδ(Λ), hence,δ−1(U) contains some element
x of Λ. Then, negative iterates ofx underρ(γ) converge towardsx0.

It follows as required that every repulsive fixed point of loxodromic elements ofρ(Γ )
belongs toΛ. �

Definition 4.18. A Cauchy-hyperbolic space–time is the quotient ofΩ±(Λ(ρ)) by ρ(Γ )
for any admissible representationρ : Γ → Isom(Mn).

Remark 4.19. It follows fromProposition 4.17andSection 11.3that any Cauchy-complete
GH space–time with holonomy groupρ(Γ ) can be isometrically embedded in the associated
Cauchy-hyperbolic space–time.

4.4. Admissible and non-admissible representations

LetΓ be a nonelementary discrete subgroup of SO0(1, n− 1). We consider the space of
representationsρ : Γ → Isom(Mn) admitting the identity map as linear part. For such aρ,
the translation partτ(γ) in the expressionρ(γ)x = γx+ τ(γ) defines a mapτ : Γ → R

1,n−1
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which satisfiesτ(γγ ′) = τ(γ) + γτ(γ ′), i.e. which is a 1-cocycle for theΓ -moduleR
1,n−1.

We denote byZ1(Γ,R
1,n−1) the space of cocycles.

Two such cocycles defines representations conjugate by a translation ofMn if and only
if they differ by a coboundary, i.e., a cocycle of the formτ(γ) = γv− v for some fixedv.
We denote byB1(Γ,R

1,n−1) the space of coboundaries.
In other words, the space of representationsρ as above up to conjugacy by translations

is parameterized by the quotient ofZ1(Γ,R
1,n−1) by B1(Γ,R

1,n−1), i.e., the twisted coho-
mology spaceH1(Γ,R

1,n−1), theΓ -module structure onR1,n−1 being given by the fixed
linear partΓ . Observe thatH1(Γ,R

1,n−1) is naturally equipped with a structure of linear
space.

Here, we want to describe the set offuture admissiblerepresentations, i.e. the domain
T + inH1(Γ,R

1,n−1) corresponding to representations preserving a future complete regular
convex domain. According toProposition 4.17, this is exactly the set of cocycles correspond-
ing to representations for which the future complete convex set defined by repulsive fixed
points of loxodromic elements is not empty.

Similarly, we can define the domainT − corresponding to representations preserving
some past complete regular domains, but observe that the conjugacy by−id induces a
transformation onH1(Γ,R

1,n−1), which is nothing but the antipodal map, and exchanges
T +, T −. In other words, we haveT − = −T +, hence, we restrict our study to future
complete regular domains.

The conjugacy by some positive homothetyλid, λ > 0 preserves the linear part too and
induces onH1(Γ,R

1,n−1) a positive homothety. It clearly preservesT + which is thus a
cone.

Lemma 4.20. T + is a convex cone.

Proof. Let [τ1], [τ2] be two elements ofT +. Let us denoteΛi the closure inJ of the set
of repulsive fixed points of loxodromic elements ofΓ for the representationρi associated
to τi. Then,Ω+(Λi) for i = 1,2 are nonempty future complete regular domains, and thus,
have nonempty intersection. Letp be an element ofΩ+(Λ1) ∩Ω+(Λ2).

For any loxodromic elementγ of Γ , we denote by (v(γ), si(γ)) its unique repulsive
fixed point inJ ≈ S× R for the representationρi. Observe thatv(γ) is indeed the same
for i = 1,2, since it is the future orientedγ-eigenvector withN-norm 1 associated to the
eigenvalueλ with absolute value less than 1. We have (seeSection 4.1):

(v(γ), si(γ)) = ρi(γ)(v(γ), si(γ)) = (v(γ), λ−1si(γ) + λ−1〈τi|λv(γ)〉).

Hence:

si(γ) = −〈τi|v(γ)〉
λ−1 − 1

.

Now, sincep belongs toΩ+(Λ1) ∩Ω+(Λ2), for any loxodromicγ and anyi, we have
〈v(γ)|p〉 − si(γ) < 0, i.e.:

(λ−1 − 1)〈v(γ)|p〉 + 〈τi|v(γ)〉 < 0.
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Clearly, this last expression is still valid if the termτi is replaced by anyατ1 + (1− α)τ2
with 0 ≤ α ≤ 1. It follows that representations associated to [ατ1 + (1− α)τ2] admits as
set of repulsive fixed points inJ a subset for which the associated future complete convex
containsp, i.e., is not empty. This means precisely that these representations all belong to
T +. �
Remark 4.21. The intersectionT + ∩ T − is a linear subspace since it is a convex cone
stable by antipody. Observe that this intersection correspond to representations preserving
acompactsubset ofJ (cf. Corollary 4.11).

4.4.1. Non-admissible cocycles

Proposition 4.22. There is a(nonuniform) lattice Γ of SO0(1,2) for which T + is
reduced to{0}.
Proof. Consider the 3-punctured sphere, i.e. the Riemann surface of genus 0 with three
cusps (there is only one such Riemann surface). It is the quotient of the Poincaré disk
by a fuchsian groupΓ , which is isomorphic to the free group of rank 2, generated by
three parabolic elementsa, b andc of SO0(1,2) satisfying the relationabc = id. There
is another description ofΓ : consider an ideal triangle in the Poincaré disk, and the group
generated by reflexions around edges of this triangle. This group contains an index 2 sub-
group, the orientation preserving elements, which is nothing but the groupΓ . It is clear
from this last description that there is an elliptic elementR of SO0(1,2) of order 3-the
rotation permuting the ideal vertices of the initial ideal triangle-such that the conjugacy by
R cyclically permutesa, b andc. Denote byα, β andκ the unique isotropic vectors fixed
respectively bya, b andc (they are the vertices of the initial ideal triangle). Of course,
κ = R(β) = R2(α).

Consider nowH1(Γ,R
1,2). For any cocycleτ, everyτ(γ) can be computed fromτ(a)

andτ(b), sincea andb generateΓ . Hence, cocycles form a six-dimensional linear space
naturally identified withR1,2 × R

1,2. Coboundaries are the image of the map fromR
1,2

into R
1,2 × R

1,2 which associates tox the pair (ax− x, bx− x). This map is injective,
sincea, b have no (nontrivial) common fixed points, hence, the image is three-dimensional:
H1(Γ,R

1,2) has dimension 3.
It will be useful later to represent elements ofZ1(Γ,R

1,2) by triples (τ(a), τ(b), τ(c))
satisfying the cocycle relationτ(a) + aτ(b) + abτ(c) = 0.

Now, if τ belongs toT +, the Minkowski isometries associated by this cocycle toa, b
andc all preserve a regular convex domain, and thus, a spacelike complete hypersurface.
According toSection 7, these isometries are not transverse, i.e., the translation vectors
τ(a), τ(b) andτ(c) are respectively orthogonal toα, β andκ. Denote byE the space of
cocycles satisfying these orthogonality conditions: we have just proved thatE contains
T +. Observe thatE is defined by linear conditions onH1(Γ,R

1,2); it is therefore a linear
subspace. Moreover, sinceτ(a), τ(b) can be selected non-orthogonal toα, β, the codimen-
sion of E is at least 2. At first glance, one could think that the third condition “τ(c) is
orthogonal toκ” immediately implies thatE has codimension 3, i.e., is trivial. But this
is not clear since it could be true that by some extraordinary miracle,τ(c) is orthogonal
to κ as soon asτ(a), τ(b) are themselves orthogonal toα, β. In this case,E would be a
line.
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To prove that this miracle does not occur, we consider the rotationR above: the con-
jugacy by R induces naturally an action onZ1(Γ,R

1,2): if τ is a cocycle,R(τ)(γ) =
Rτ(R−1γR). When we express elements ofZ1(Γ,R

1,2) by triples (τ(a), τ(b), τ(c)), the
iteration underR maps such an element on (Rτ(c), Rτ(a), Rτ(b)). Now, we observe that
this action has order 3 (exactly order 3 since it is not trivial). Hence, as any nontrivial
automorphism of three-dimensional spaces of order 3, the action induced byR one the
quotientH1(Γ,R

1,2) has a line of fixed points∆, and a plane on which it acts as a
rotation with angle 2π/3. In particular,∆ is the unique line globally preserved byR.
Hence, if the miracle imagined above occurs,E, which is obviouslyR-invariant, must be
equal to∆.

The next step is the identification of∆: if a cocycleτ represents a fixed point ofR in
H1(Γ,R

1,2), it is cohomologous to (τ + R(τ) + R2(τ))/3. Hence, elements ofH1(Γ,R
1,2)

fixed byR are all represented by triples (τ(a), τ(b), τ(c)) satisfyingτ(a) = Rτ(c), τ(b) =
Rτ(a), τ(c) = Rτ(b). The cocycle property of such a triple reduces to:

τ(a) + aRτ(a) + abR2τ(a) = 0,

i.e.

τ(a) + aRτ(a) + (aR)2τ(a) = 0.

Thus, the elementaR of SO0(1,2) is of special interest. Observe that it has order 3. Indeed:

(aR)3 = a(Ra)(Ra)R = ab(Rb)R2 = abcR3 = id.

It is also nontrivial, sinceaR(κ) = α. Hence, inM3, it admits a timelike line of fixed
points, and the orthogonal to this line of fixed points is a spacelike planeP0. Now, we
observe that the cocycle property stated above for (τ(a), Rτ(a), R2τ(a)) means precisely
thatτ(a) must belong toP0!

Hence, the line of fixed points∆ is a quotient ofP0 by elementsτ(a) representingR-
invariantscoboundaries. These coboundaries form a subspace ofP0 of dimension 1, since
∆ has dimension 1, andP0 has dimension 2. We claim that these coboundaries are precisely
τ(a) = ax− x wherex is a fixed point ofR. Indeed:

- The triple (ax− x, bx− x, cx− x) isR-invariant:R(ax− x) = Rax− Rx = bRx− x =
bx− x, and similarly,R(bx− x) = cx− x.

- The vectorax− x belongs toP0. Indeed:

(ax− x) + aR(ax− x) + (aR)2(ax− x)

= ax− x+ aRax− ax+ aRaRax− aRax = (aR)3x− x = 0.

Now, we observe that theax− x are exactly the vectors inP0 orthogonal toα.
In other words, theR-fixed triples (τ(a), Rτ(a), R2τ(a)) representing elements inE
are all coboundaries. It means that the intersection betweenE and ∆ is reduced
to {0}. In particular,E �= ∆: as observed previously, it implies thatE is reduced
to {0}. �
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Remark 4.23. The proof above highly relies on the specific symmetric properties of the
group. The identification ofT + for geometrically finite Kleinian groups remains an inter-
esting challenge, even in dimension 2+ 1.

4.4.2. Convex cocompact Kleinian groups
We first recall some well-known facts on Kleinian group. See e.g.[17]. LetΓ be a such a

Kleinian group, i.e. a finitely generated (nonelementary) discrete subgroup of SO0(1, n− 1).
Let Λ̂ be its limit set in the conformal sphereS ≈ ∂Hn−1, and letC(Λ̂) be the convex hull
of Λ̂ in H

n−1. This is the minimalΓ -invariant closed convex subset ofH
n−1.

Definition 4.24. Γ is geometrically finiteif, for any ε > 0, the quotient of theε-
neighborhood ofC(Λ̂) by Γ has finite volume. If moreover this quotient is compact, then
Γ is convex cocompact.

The main aspect of convex cocompact groups we will use is thehyperboliccharacter of
their dynamics around the limit sets. Namely (see[20], Section 9), there is a finite symmetric
generating setG for Γ of loxodromic elementsγ1, . . . , γk such that:

(i) For some fixed round metric onS in the natural conformal class, ifUi denotes the
(open) domain of the sphere wheregi is expanding, then the union of theUi coversΛ̂.

(ii) There is an uniformNsuch that, for anyx0 in Λ̂, and for any pair of sequencesγi0, γi1, . . .

and γj0, γj1, . . . satisfying xn+1 = γinxn ∈ Uin+1 and x′n+1 = γjnx
′
n ∈ Ujn+1, then

(γjn . . . γj0)(γin . . . γi0)−1 is equal to a productγkl . . . γk0 with l ≤ N.

Actually, Sullivan in[20] states the hyperbolic property of convex cocompact Kleinian
groups only in the three-dimensional case, but his proof applies for the general case in any
dimension: indeed, the proof in[20] relies on the fact that the limit set admits onlyconical
limit points, and this fact remains true in any dimension (in fact, it is another equivalent
definition of convex cocompact groups, see[17]). Anyway, any reader acquainted with
dynamical systems theory will recognize this hyperbolic property onΛ̂ as the hyperbolic
property of the geodesic flow onΓ \ H

n around the compact invariant set formed by the
geodesics lying entirely inΓ \ C(Λ̂).

Observe that this hyperbolic property extends directly to the action ofΓ ⊂ SO0
(1, n− 1) ⊂ Isom(Mn) on J, where the compact invariant subset isΛ̂× {0} (here, the
action onMn under consideration is the action associated to the trivial cocycle). Indeed,
the property (i) follows fromProposition 4.2and the expanding property ofΓ on S, and
the property (ii) follows directly from its version onS.

Hence, and as observed in the last remark p. 259 of[20], Theorem II of[20] can be
applied: the action ofΓ on Λ̂× {0} is structurally stable. In other words, for any action of
Γ onJC0-near the initial hyperbolic action, there is a compact invariant subset, on which
the action restricts as an action topologically conjugate to the restriction ofΓ on Λ̂× {0}.
This is true in particular for actions associated to nontrivial cocycles inZ1(Γ,R

1,n−1) which
are sufficiently small, i.e., for which theτ(γi) (1 ≤ i ≤ k) have smallN-norm. These small
cocycles correspond to actions onJ preserving a compact subset; therefore, they belong to
T + ∩ −T +. SinceT + is a cone.

Theorem 4.25.For convex cocompact Kleinian groups, the convex coneT + is the whole
H1(Γ,R

1,n−1).
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5. Around Bieberbach’s theorem

5.1. Non-discrete linear parts and Auslander’s theorem

We will use the following theorem, refinement by Carrière and Dal’bo of a theorem by
Auslander (see[9], Theorem 1.2.1).

Theorem 5.1. Let Γ be a discrete subgroup ofAff( n,R). Then, the identity component
G0 of the closure ofL(Γ ) in GL(n,R) is nilpotent. In particular, Γnd = L−1(G0 ∩ L(Γ ))
is nilpotent.

This theorem fits perfectly with (see[9], Proposition 1.2.2).

Theorem 5.2. LetΓ be a nilpotent group of affine transformations ofR
n. Then, there exist

a maximalΓ -invariant affine subspaceU of R
n such that the restriction of the action ofΓ

toU is unipotent. Moreover, this maximal unipotent affine subspace is unique.

As an application of these theorems, it is easy, for example, to recover the following
version of Bieberbach’s Theorem:

If Γ is discrete group of isometries of the Euclidean space of dimension n, it contains a
finite index free abelian subgroup of finite rank.

The proof goes as follows: ifL(Γ ) ⊂ SO(n) is discrete, it is finite; the kernel ofL|Γ
is a finite index subgroup of translations. IfL(Γ ) is not discrete, we consider the unique
maximal unipotent affine subspace associated toΓnd : Γnd is a finite index subgroup of
Γ , and the kernel of the restriction morphismΓ → Isom(U) is a finite index subgroup of
Γnd . The proof is completed by the observation that unipotent elements of Isom(U) are
translations.

The most famous version of Bieberbach’s theorem is maybe the following corollary:
If Γ is a crystallographic group, i.e. a discrete group of isometries such thatR

n/Γ is
compact, then it contains a finite index subgroup of translations.

This complement arises from a homological argument: sinceR
n/Γ is compact, any finite

index subgroup has a non-trivial Betti-numberbn, but since there is a finite index subgroup
of Γ acting as translations onU, this finite index subgroup has trivial Betti numbersbi for
i ≥ dim(U).

5.2. Twisted product by Euclidean manifolds

Truly speaking, it is easy to provide a more precise version of Bieberbach’s theorem in
the non-compact case, but requiring a new notion: letM be any manifold, and denote by
Γ its fundamental group. LetN be any flat Euclidean manifold, andr : Γ → Isom(N) be
any morphism. It is well-known how to produce from such a data a locally trivial bundle
q : B → M with fibers diffeomorphic toN: if M̃ is the universal covering ofM, consider
the diagonal action (˜x, y) �→ (γx̃, r(γ)(y)) of Γ on the productM̃ ×N. Since the action
of Γ on the first component̃M is free and properly discontinuous, the same is true for its
action onM̃ ×N. Denote byB the quotient space, andq : B → M the map induced by the
first projection map. Clearly,q is a locally trivial fibration, with fiberN as claimed above.
It is called thesuspension over M with monodromy r.
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Now, if M is a flat Euclidean manifold, the product metric onM̃ ×N is locally Eu-
clidean (sinceN is assumed here locally Euclidean) and is preserved by theΓ -action
defined above. Therefore, the quotient spaceB inherits itself a locally Euclidean struc-
ture, canonically defined from the initial locally Euclidean structures onM and N. B,
equipped with this Euclidean structure, is called thetwisted product of M by N with mon-
odromy r.

The argument in the preceding section actually show thatany locally Euclidean manifold
is a twisted product of a flat torusΓ \U by a Euclidean linear spaceRn/U with holonomy
in SO(Rn/U).

It should be clear to the reader that a similar procedure can be defined whenM is
a flat Lorentzian manifold; the result is then a canonical flat Lorentzian structure onB,
which is called once morethe twisted product of M by the Euclidean manifold N, with
monodromy r. WhenN is an Euclidean linear space andr takes value in linear isometries
(i.e., r(Γ ) admits a global fixed point inN), then we say thatB is a linear twisted product
over M.

Remark 5.3. If t : M → R is a proper time function expressingM as a GH space–time, the
compositiont ◦ q satisfies the same properties. Hence,the twisted products by Euclidean
manifolds of flat GH space–times are still flat GH space–times. The inverse statement,
namely the fact thatM is GH as soon asB is, even if far from obvious now, follows from
Theorem 1.1.

In the same vein, twisted products over Cauchy-complete GH space–times are still
Cauchy-complete, but, of course, such a procedure preserves Cauchy-compactness if and
only if the Euclidean manifoldN is closed (i.e. finitely covered by a flat torus).

Remark 5.4. Since here we don’t worry about finite index phenomena, the Bieberbach’s
theorem as stated above gives a completely satisfactory description of Euclidean manifolds,
and their isometry groups Isom(N) are easily described. For example, whenN is a flat torus,
up to finite index, the representationr : Γ → Isom(N) can be assumed as taking value in
translations onN.

We should also point out that all twisted products we consider in this work are either
linear twisted products, or twisted products by flat tori.

The following lemma will be useful to recognize twisted products, and its proof should
be obvious to the reader.

Lemma 5.5. Let B be a flat space–time, quotient of an open subsetΩ of Mn by a
group of isometries acting freely and properly discontinuously. Assume thatΓ preserves a
timelike affine subspaceU, and thatΩ is invariant by translations by vectors contained in
the orthogonal linear spaceU⊥. Then, the quotient ofU ∩Ω byΓ is a flat space–time M,
and B is the linear twisted product of M by the Euclidean spaceU⊥.

6. Classification of isometries

Let g be an isometry ofMn. We denote byL(g) its linear part,p the elementL(g) − id

of SO0(1, n− 1), andτ the translation part:g(x) = L(g)(x) + τ.
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Observe that:

(∗) 〈x|p(y)〉 + 〈p(x)|y〉 + 〈p(x)|p(y)〉 = 0.

In particular, if we denote byI the image ofp, the kernel ofp is the orthogonalI⊥.
Moreover,τ is defined moduloI, since it can be modified through conjugacies by trans-

lations.
Up to conjugacy, every isometry is of the following form:

• Elliptic: L(g) preserves some Euclidean norm onMn. Then, sinceMn = I ⊕ I⊥, τ can
be selected inI⊥, i.e., fixed byL(g). Observe that in this case,I is spacelike, except if
R is the identity map. Indeed,L(g) considered as an isometry ofHn−1 has a fixed point
there, proving thatI⊥ contains a timelike element. The claim follows.

• Hyperbolic: of the form:




ch(ζ) sh(ζ) 0 0 . . . 0

sh(ζ) ch(ζ) 0 0 . . . 0

0 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1




.

In this case,τ can be assumed inI⊥.
• Unipotent:p is nilpotent. There is a trichotomy on this case, depending on the position

of τ with respect toI andI⊥ (see below).
• Loxodromic: of the formR ◦ A, whereR is elliptic, A hyperbolic, andR ◦ A = A ◦ R.

Once more,τ should be assumed fixed byL(g).
• Parabolic: of the formR ◦ A, whereR is elliptic, A unipotent, andR ◦ A = A ◦ R.

We have to understand better the parabolic case; in particular:

6.1. Unipotent linear parts

Observe that in this case,J = I ∩ I⊥ is a nontrivial isotropic space, therefore, it is
generated by a single isotropic elementv0. A straightforward analysis shows thatL(g) is
represented, in some (non-orthogonal) basis (e1, e2, . . . , en), by the matrix:




1 1 0 . . . 0 0

0 1 0 . . . 0 1

. . . . . . . . . . . . 1 0

0 . . . . . . . . . . . . 1


 .

Moreover, the basis is such thatJ is spanned by the first elemente1, I by (e1, e2), and
J⊥ by (e1, e2, . . . , en−1).
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For the translation vectorτ, we have three cases to consider:

- either it belongs toI, in which case we can assume it to be 0; we call this case thelinear
case;

- either it belongs toJ⊥ \ I, in which case we can assume that it belongs toI⊥, since
J⊥ = I + I⊥: we call it thetangent case;

- either it does not belong toJ⊥: we call this case thetransverse case.

Remark6.1. In the three-dimensional case, we have the equalityI = J⊥, hence, the tangent
case does not occur.

6.2. Parabolic linear parts

We consider here the caseL(g) = R ◦ (id + p) = (id + p) ◦ R with p nilpotent andRa
non-trivial elliptic element of SO0(1, n− 1).

The preceding section characterizesp. We observe thatI, Jand their orthogonals must be
R-invariant. SinceR belongs to the orthochronous component,R(e1) = e1. Being elliptic,
its restriction toI = 〈e1, e2〉 is the identity map.

Therefore,R ◦ p = p. Denote byI the image ofR− id; fixed points ofRare the elements
of I⊥. The claim above implies the inclusionsI ⊂ I⊥, I ⊂ I⊥. Observe also that the
orthogonal ofJ⊥ by anyR-invariant Euclidean norm is aR-invariant line: it is contained in
the fixed point set ofR, i.e., inI⊥. In other words,en can be selectedR-invariant.

Now, we observe thatτ is defined modulo Im(R− id + p). Any elementwofMn is a sum
w = w1 + w2 with w1 in I andw2 in I⊥. Then, (R− id + p)(w1) = (R− id)(w1) since
p(I) = 0, and (R− id + p)(w2) = p(w2). We deduce that Im(R− id + p) containsI andI:
the first claim becauseI⊥ containsI + 〈vn〉, and the second claim because (R− id)I = I.
The reverse inclusions being obvious (p(w2) ∈ I and (R− id)(w1) ∈ I), we obtain that
Im(R− id + p) = I ⊕ I, the sum being direct and orthogonal.

Hence,τ can be assumed belonging toI⊥, i.e., fixed byR. InsideI⊥, we can selectτ
moduloI: in particular, it can be assumed orthogonal toe2.

Once more, we distinguish three cases:

- the linear caseif τ belongs toI;
- thetangent caseif τ belongs toJ⊥ \ I;
- thetransverse caseif τ does not belong toJ⊥.

Observe that a parabolic element is nontransverse if and only if it preserves every affine
hyperplane with directionJ⊥.

7. Achronal domains of isometries

For any isometryg, we define its achronal domainΩg by:

Ωg = {x ∈ Mn/∀q ∈ Z, |gq(x) − x|2 > 0}.
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It is the open set formed by the elements which are not causally related to anyg-iterates
of themselves. We describeΩg in every conjugacy class:

7.1. Elliptic case

It is the casegx = Rx+ τ, whereR is a rotation fixingτ. Hence:

|gqx− x|2 = |(Rq − id)(x) + qτ|2 = |(Rq − id)(x)|2 + q2|τ|2

sinceτ is orthogonal toI which contains|(Rq − id)(x)|2. Remember also thatI is spacelike.
Hence, we have three cases:

(1) τ is timelike. Then,Ωg = ∅ (Indeed, the termq2|τ|2 is the leading term since (Rq −
id)(x) is uniformly bounded).

(2) τ is spacelike. Then,Ωg = Mn.
(3) τ is lightlike. Then, the complement ofΩg is the subspace formed byR-periodic points,

i.e., theRn-fixed points. This case contains a very special one, the linear case, whereτ

is 0.

7.2. Loxodromic elements

It is more suitable to write elements ofMn in the form (x, y, v) with x, y in R andv in
R

n−2, so that the Lorentzian formQ is expressed by:

Q = xy + ‖v‖2,

where‖ ‖2 denotes the usual Euclidean norm onR
n−2. Then, the action of ofL(g) is defined

by:

L(g)(x, y, v) = (λx, λ−1y,Rv),

whereλ = eζ/2 is a positive real number, andRa rotation ofRn−2. Observe also thatτ can
be assumed belonging toRn−2. Then:

|gqu− u|2 = q2|τ|2 + (λq − 1)(λ−q − 1)xy + ‖(Rq − id)(v)‖2

= q2|τ|2 − 4 sh2(qζ)xy + ‖(Rq − id)(v)‖2
.

The leading term−4sh2(qζ)xy ensures:

Ωg =
{

(x, y, v)

xy
< 0

}
.
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7.3. Parabolic elements

Whenp is the nilpotent part of a unipotent elementid + p of SO0(1, n− 1), we have:

(id + p)k = id + kp+ 1
2(k(k − 1))p2.

When classifying parabolic elements, we proved that the elliptic part satisfies
R ◦ p = p, and that the translation part can be assumed fixed byRand inv⊥1 . It follows:

gq(x) = Rq(id + p)q(x) + qτ +
q−1∑
k=0

kp(τ) +
q−1∑
k=0

k(k − 1)

2
p2(τ)

= Rqx+ qp(x) + q(q− 1)

2
p2(x) + qτ + q(q− 1)

2
p(τ)

+ q(q− 1)(q− 2)

6
p2(τ).

Hence,x belongs toΩg if and only if for everyq, T (q) is positive, where:

T (q) =
∣∣∣∣Rqx− x

q
+ p(x) + (q− 1)

2
p2(x) + τ + (q− 1)

2
p(τ)

+ (q− 1)(q− 2)

6
p2(τ)

∣∣∣∣
2

.

The linear caseτ = 0. The remaining terms all belong toJ⊥, andp2(x) belongs toJ;
moreover,p(x) belongs toI which is orthogonal to (Rqx− x)/q since this term belongs to
I. Hence,T (q) is equal to|(Rqx− x)/q|2 + |p(x)|2 and is therefore nonnegative. It vanish
if and only if |p(x)|2 = 0, i.e.,x ∈ J⊥, and |(Rqx− x)/q|2 = 0, i.e.x = Rqx sinceI is
spacelike.

In other words, the complement ofΩg is the set ofRn-fixed points in the hyperplaneJ⊥.
The tangent caseτ ∈ J⊥ \ I. Then,p2(τ) = 0. Observe that all the terms inT (q) belong

to J⊥, and thatp2(x), p(τ) both belong toJ. Thus, the expression ofT (q) reduces to:

∣∣∣∣Rqx− x

q
+ p(x) + τ

∣∣∣∣
2

.

The term (Rqx− x)/q belongs toI, andp(x) + τ belongs toI⊥. Therefore,T (q) is the sum
of the nonnegative terms|(Rqx− x)/q|2 and|τ + p(x)|2. Moreover, sinceτ is assumednot
in I, the second term never vanishes.

We conclude that in the tangent case,Ωg is the entireMn.
The transverse caseτ ∈ Mn \ J⊥. In this case,p2(τ) is not 0. We developT (q), and

seek for the leading terms: sincep2(τ) is isotropic and orthogonal top(τ),p(x), the leading
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terms are the terms inq2:

( 1
4(q− 1)2)|p(τ)|2 + 2(1

6(q− 1)(q− 2))〈τ|p2(τ)〉.

According to (∗):

〈τ|p2(τ)〉 + |p(τ)|2 + 〈p(τ)|p2(τ)〉 = 0.

Hence, keeping in mind〈p(τ)|p2(τ)〉 = 0, the leading term is:

( 1
12(3(q− 1)2 − 4(q− 1)(q− 2)))|p(τ)|2 = ( 1

12((q− 1)(5− q)))|p(τ)|2.

Since|p(τ)|2 > 0, we obtain thatT (q) is negative for bigq:
Conclusion:Ωg is empty.

7.4. Visibility of one point from another

Points of the achronal domain studied above are points which cannot observe anyg-
iterate of themselves. We wonder now, a base pointx0 being fixed, how manyg-iterates of a
pointx are causally related tox0? For our purpose, we just need to consider the case where
g is parabolic.

Lemma 7.1. Let g be a parabolic isometry. Letx0 be any point ofMn. Then, there exist
at least one point x inMn admitting infinitely many g-iterates in the future or in the past
of x0.

Proof. We want to prove the existence ofxsuch that for infinitelyq, the norm|gq(x) − x0|2
is negative. We have:

|gq(x) − x0|2 = |x|2 + |x0|2 − 2〈gq(x)|x0〉.

In the transverse case, the leading term inq for 〈gq(x)|x0〉 = 〈gq(x0)|x〉 is:

〈( 1
6(q(q− 1)(q− 2)))p2(τ)|x〉.

Whenx is not orthogonal top2(τ), this quantity is positive with arbitrarily big values
for infinitely manyq. Thus, such ax admits infinitelyg-iterates causally related tox0: the
lemma is proven in this case.

In the linear or tangent cases, the leading term for〈gq(x)|x0〉 is:

1
2q(q− 1)〈p2(x) + p(τ)|x0〉.

Therefore, the lemma is proven in this case by takingx for which 〈p2(x) + p(τ)|x0〉 is
positive. �
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8. Spacelike hypersurfaces and achronal domains

From now, we consider a flat space–timeM of dimensionn, and an isometric immersion
f : S → M of a completeRiemannian hypersurface. LetM̃ be the universal covering of
M, D : M̃ → Mn the developing map,Γ the fundamental group ofS, andf̃ : S̃ → M̃ a
lifting of f. There is an action ofΓ on M̃, a priori non-injective, such that̃f is an equi-
variant map.

Let ρ be the holonomy morphism ofM restricted toΓ : it is a morphismρ : Γ →
Isom(Mn).

We begin with an easy, but fundamental observation (see, for example,[16], or [18]).

Proposition 8.1. Let∆ be a timelike direction inMn. LetQ(∆) be the quotient linear space
Mn/∆, andπ : Mn → Q(∆) the quotient map. EquipQ(∆) with the metric for whichπ
restricted to every spacelike hyperplane orthogonal to∆ is an isometry. Then, π ◦D ◦ f̃ is
a homeomorphism.

Proof. The mapπ ◦D ◦ f̃ is distance increasing, and thus, a local homeomorphism. Since
S̃ is complete, it has moreover the lifting property. Therefore,π ◦D ◦ f̃ is a covering map.
The proposition follows sinceQ(∆) is simply connected. �
Corollary 8.2. The maps f andD ◦ f̃ are embeddings. The natural morphismΓ ⊂ π1(M)
and the morphismρ are injective. Moreover,D ◦ f̃ (S̃) intersects every timelike geodesic.

From now, we identifỹS with its image underD ◦ f̃ , andΓ with its image underρ.

Corollary 8.3. LetP0 be a lightlike affine hyperplane ofMn, with direction the orthogonal
of a lightlike direction∆0. Then, eitherS̃ does not intersectP0, or it intersects every affine
line with direction∆0 contained inP0.

Proof. The proof is completely similar to the proof of 8.1; the restriction toS ∩ P0 of the
projection ontoP0/∆0 is an isometry. �
Corollary 8.4. If Γ preserves a spacelike affine subspaceU, thenΓ contains as a finite
index subgroup a free abelian group of finite rank.

Proof. Apply Proposition 8.1with ∆ ⊂ U⊥. The action ofΓ on π(U) has to be free
and properly discontinuous, and the same is true for the action onU. But this action is
isometric for the induced Euclidean metric onU; the lemma then follows from Bieberbach’s
Theorem. �

As an immediate corollary ofProposition 8.1, we obtain that̃S is the graph of a contracting
mapϕ : R

n−1 → R. Inversely, it is worth to extend the definition of spacelike hypersurfaces
to (local) graphs of contracting maps from (Euclidean)R

n−1 into (Euclidean)R. In other
words, it is not necessary to consider spacelike hypersurfaces as smooth objects, Lipschitz
regularity is enough. This low regularity is sufficient to define a (non-Riemannian) length
metric on the spacelike hypersurface, since Lipschitz maps are differentiable almost every-
where: ifc : t �→ R

n−1 is aC1-curve inR
n−1, define the length ofϕ ◦ c as the Lebesgue

integral of
√

1− ϕ′(c(t))2‖c′(t)‖.
Another corollary is the following global property: spacelike hypersurfaces are achronal

closed set, meaning that ifxandyare two distinct points iñS, one cannot be contained in the
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past of future cone of the other, i.e., we have|x− y|2 > 0. SinceS̃ is γ-invariant, it follows
that it is contained inΩγ for every elementγ of Γ . Actually, thanks toCorollary 8.3, we
have a quite better statement.

Definition 8.5. For every isometryg of Mn. We define an open setU(g) in the following
way:

- U(g) = Ωg if g is loxodromic, or spacelike elliptic, or non-linear parabolic.
- U(g) = ∅ if g is nonspacelike elliptic.
- U(g) = Mn \ J⊥ if g is linear parabolic, whereJ is the lightlike affine line of fixed points

of g.

Lemma 8.6. The complete spacelike hypersurfaceS̃ is contained in the interior ofU(Γ ) =⋂
γ∈Γ U(γ).

Proof. First, we prove the inclusioñS ⊂ U(γ) for every nontrivial elementγ of Γ . We
observed previously this inclusion whenU(γ) = Ωγ ; thus, we have only two cases to
consider:

• The linear parabolic case. SinceS̃ ⊂ Ωγ , S̃ cannot intersect the lightlike line of fixed
pointsJ. According toCorollary 8.3, it cannot intersectJ⊥.

• The nonspacelike elliptic case. In this case,L(γ) admits a timelike line of fixed points.
According tocorollary 8.2, this line intersects̃S at some pointx. Then,γx = x+ τ: this
is impossible sinceτ is nonspacelike and thatS̃ is achronal.

Consider now a pointx in S̃, andB a small convex neighborhood ofx such that lightlike
geodesic segment contained inB intersects̃S. Then, for everyγ, the complement ofU(γ)
is a union of lightlike geodesic which cannot intersectS̃, and thus, cannot intersectB. It
proves that̃S is contained in the interior ofU(Γ ). �
Definition 8.7. The interior ofU(Γ ) is denoted byΩ(Γ ) and called the achronal domain
of Γ . The connected component of the interior ofU(Γ ) containingS̃ is denoted byΩ(S̃).

Remark 8.8. For any isometryg, and for every nonzero integern we haveU(gn) = U(g).
Therefore, ifΓ ′ is a finite index subgroup ofΓ , the equalityU(Γ ′) = U(Γ ) holds. Thanks
to this remark, we can replaceΓ by any finite index subgroup.

Remark 8.9. From now, we will assume that the groupΓ does not contain nonspacelike
elliptic and transverse parabolic elements, since we have shown that in this caseΓ cannot
be the holonomy group of a Cauchy-complete GH space–time.

Proposition 8.10. Ω(S̃) is a convex open set. It is globally hyperbolic. The action ofΓ on
it is free and achronal.

Proof. The convexity follows from the convexity of connected components of everyU(γ).
The action ofΓ onΩ(S̃) is obviously free and achronal. The global hyperbolicity follows
from the following criterion (see[4]): a space–time isdistinguishedif for every pairx �= y,
the causal futuresandcausal pasts ofx, y are distinct. Now, a distinguished space–time is
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globally hyperbolic if for any pair of pointsx, y, the intersection between the causal past of
x and the causal future ofy is empty or compact.

The open setΩ(Γ ) is obviously distinguished, we can thus apply the criterion above:
let x, y be two points inΩ(Γ ), with x in the causal future ofy. Then they are pointsx′, y′
nearx, y in Ω(Γ ), and such thatx is in the past ofx′ andy in the future ofy′—we mean the
causality relation inMn. Then,F (y) ∩ P(x) is contained in the interior ofF (y′) ∩ P(x′),
and this interior is contained inΩ(Γ ) sinceF (y′) ∩ P(x′) is contained in everyU(γ). �

From now, we assume thatM is a Cauchy-complete globally hyperbolic space–time
admittingSas a complete Cauchy hypersurface ofM. The following observation is well-
known.

Proposition 8.11.M is homeomorphic toS × R, where everyS × {∗} are Cauchy hyper-
surfaces. Any nonspacelike geodesic inM̃ intersectS̃.

Proof. See[4]. �
Proposition 8.12. The developing mapD : M̃ → Mn is injective, with image contained
in Ω(S̃).

Proof. Fix a timelike direction∆ in Mn. For any element ˜x of M̃, let δ(x̃) be the line con-
tainingD(x̃) with direction∆, andd(x̃) the connected component ofD−1(δ(x̃)) containing
x̃. Then,d(x̃) is a timelike geodesic iñM and must therefore intersectS̃ at a single point
p(x̃).

If D(x̃) = D(ỹ), thenδ(x̃) = δ(ỹ) = δ andD(p(x̃)) = δ ∩D(S̃) = D(p(ỹ)). Hence, ac-
cording toCorollary 8.2, p(x̃) = p(ỹ), and thus,d(x̃) = d(ỹ). But the restriction ofD to
d(x̃) is an local homeomorphism from a topological line intoR: it is therefore injective. We
obtainx̃ = ỹ, i.e.,D is injective.

The homeomorphismM ≈ S × R lifts to a homeomorphism̃M ≈ S̃ × R where every
S̃ × {t} is a Cauchy hypersurface for̃M. Hence, for anyt, every nonspacelike geodesic
intersectingS̃ meetsS̃ × {t}. It follows, thanks toProposition 8.1, that every nonspacelike
line of Mn meetsD(S̃ × {t}). That’s all we need to reproduce the arguments used in the
preceding section, leading to the conclusion that for anyt,D(S̃ × {t}) is contained inΩ(Γ ).
SinceM̃ is connected, we obtain that the image ofD is contained inΩ(S̃). �

All the results above suggest a nice way towards the proof of the main theorems: if the
action ofΓ on Ω(S̃) is proper, the quotient spaceM(S) = Γ \Ω(S̃) is well-defined, and
any globally hyperbolic manifold containingS can be isometrically embedded inM(S).
Unfortunately, things are not going so nicely: indeed, for unipotent space–times,Ω(S̃) can
be the entire Minkowski space whereas the action ofΓ onMn is not proper (seeRemark 9.4).

Anyway, this approach will be essentially successful after ruling out a special case
including unipotent space–times: the nonloxodromic case, i.e., the case whereΓ has no
loxodromic element: this is the topic of the next section.

Remark 8.13. Actually, whenM is maximal globally hyperbolic,C(S̃), the image ofD,
is the so-called Cauchy domain, or domain of dependence of the spacelike hypersurface
S as defined in[16,2] or [8]: it is the open set formed by points such that every lightlike
geodesic through the point intersectsS. When the initial hypersurfaceS is closed,Ω(S̃) is
the Cauchy domain of̃S (seeremark 11.1); but this is not true in the general case.
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9. The nonloxodromic case

This is the case whereΓ has no loxodromic element.

Proposition 9.1. If Γ does not contain loxodromic elements, it is elementary; i.e., up to
finite index, its linear part is either contained inSO(n− 1) (up to conjugacy), or its linear
part stabilizes an isotropic vector.

Proof. If Γ has no loxodromic elements, according to[6], the same is true for its Zariski
closureG. SinceGhas a finite number of connected components, we can assume, restricting
Γ to a finite index subgroup if necessary, thatΓ is contained in the identity componentG0.
If G0 admits a parabolic elementg1 with fixed pointx in Sn−2 = ∂Hn−1, thenx is fixed by
every parabolic element ofG0: indeed, ifg2 is another parabolic element with fixed point
x2 �= x1, for any small neighborhoodU of x2, gk1(U) is arbitrarily nearx1, i.e. far fromx2

for big k. In particular,gk1(U) does not containx2. Therefore, for bigl, gl2g
k
1(U) is arbitrarily

nearx2. In particular, ifk andl are sufficiently big, the closure ofgl2g
k
1(U) is contained in

U, showing thatgl2g1 is loxodromic.
Hence, ifG0 admits a parabolic element, the fixed point of this parabolic element is fixed

by every element ofG0, meaning thatL(Γ ) stabilizes a lightlike direction.
If not, G0 admits only elliptic elements. Therefore, 1-parameter subgroups are all com-

pact: it follows thatG0 is compact, hence, contained in a conjugate ofSO(n− 1). �
According toProposition 9.1, the nonloxodromic case decomposes in the elliptic case,

and the parabolic case:

9.1. The elliptic case

There is a flat Euclidean metric onMn preserved byΓ . Remember also that according to
8.6, elliptic elements ofΓ are all spacelike. Hence,U(Γ ) = Mn, andΓ acts freely onMn.
According to Bieberbach’s Theorem, up to finite index, there is a unique maximal affine
subspaceU on whichΓ acts by translations. Moreover, SO(n− 1) ⊂ SO(1, n− 1) is the
stabilizer of a point inHn−1, i.e., preserves a timelike direction∆0: it follows thatU is
timelike. According toLemma 5.5, M(S) is thus a linear twisted product over a translation
space–time.

9.2. The parabolic case

In this case, up to finite index,L(Γ ) preserves an isotropic vectorv0 andΓ contains a
parabolic elementγ1. Denote byP0 the orthogonalv⊥0 , by∆0 = P⊥

0 the direction containing
v0, and byP̄0 the quotient spaceP0/∆0. The Lorentzian quadratic form onMn induces
on P̄0 an Euclidean quadratic form ¯q0 which is preserved by the natural action ofL(Γ ).
The quotient spaceQ0 = Mn/∆0 is a (n− 1)-dimensional space foliated by affine planes
with directionP̄0. We denote byπ0 : Mn → Q0 the quotient map. Finally, we denote by
G(v0) the group of isometries ofMn preservingv0. The groupG(v0) has an induced affine
action onQ0: there is a representationα : G(v0) → Aff(Q0) for whichπ0 is equivariant.
The kernel ofα is generated by translations along∆0.
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In a similar way, we consider the quotient mapπ1 : Mn → Mn/P0 = Q1: the induced
action of an elementg of G(v0) onMn/P0 is a translation by a real numberb(g). There is
a canonical mapf : Q0 → Q1.

We keep in mind thatΓ preserves the complete spacelike hypersurfaceS̃: this has some
implications:

(1) The projectionπ0(S̃) is an open set of the formf−1(I) whereI is a segment of the
affine lineQ1 (cf. Corollary 8.3).

(2) Ω(S̃) is π−1
1 (I ′) whereI ′ is a segment ofQ1 containingI. Indeed, everyU(γ) is a

preimage byπ1 of a half-line inQ1.
(3) The action ofΓ onπ0(S̃) viaα is free and properly discontinuous (since the restriction

of π0 to S̃ is a homeomorphism onto its image).

Thus, point (3) above implies thatα(Γ ) is a discrete subgroup of Aff(Q0).

9.2.1. A coordinate system onQ0
Select a lightlike vectorvn in Mn transverse toP0 and such that〈v0|vn〉 = 1, and denote

abusivelyP̄0 the intersectionP0 ∩ v⊥n . Then, we decompose every element ofMn in xv0 +
z+ yvn with z in P̄0. The spaceQ0 can be canonically decomposed in the formP̄0 × R, so
that the projection mapπ0 is given by:

π0(xv0 + z+ yvn) = (z, y).

Now, the action of the image underα of an elementg of G(v0) acts onQ0 ≈ P̄0 × R has
the following expression:

(∗∗) α(g)(z, y) = (R(g)(z) + u(g) + yv(g), y + b(g)),

whereu(g), v(g) belong toP̄0, R(g) is a rotation inP̄0, andb(g) a real number.
The action of the linear part ofg onMn ≈ R ⊕ P̄0 ⊕ R can be expressed by:

g(xv0 + z+ yvn) = (x− 〈v(g)|R(g)(z)〉 − 1
2y|v(g)|2)v0 + (R(g)z+ yv(g)) + yvn,

The translation part being given byµ(g)v0 + u(g) + b(g)vn, whereµ(g) is not character-
ized byα(g). Observe that the linear partL(g) is uniquely defined by the induced isometry
λ(g) of P̄0, i.e., by the pair (R, v). An elementg is elliptic if λ(g) admits a fixed point in̄P0.
If not, g is parabolic.

The action onQ0 of purely unipotent elements ofG(v0) has the following expression:

(∗∗′) α(g)(z, y) = (z+ u(g) + yv(g), y + b(g)).

Therefore, they form a groupU(v0). Their action onMn is:

g(xv0 + z+ yvn) = (x− 〈v(g)|z〉 − 1
2y|v(g)|2 + µ(g))v0

+ (z+ yv(g) + u(g)) + (y + b(g))vn.
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We distinguish the kernelA(v0) ofb : U(v0) → R. Every elementgofA(v0) is characterized
byu(g),b(g),µ(g). We recognize the groupAdiscussed in the introduction for the definition
of unipotent space–times.

Remark 9.2. The coordinate system is subordinated to the initial choice ofvn which is
defined up to an element ofP0. Selectw an element ofP0, and consider the new coordinates
(x′, z′, y′), and the new morphismsu′, v′, µ′ defined with respect to the decomposition
∆0 ⊕ (P0 ∩ (vn + w)⊥) ⊕ 〈vn + w〉.

• If w is a multipleav0, thenxv0 + z+ yvn = (x− ay)v0 + z+ y(vn + av0), showing
thatu′ = u, v′ = v andµ′ = µ.

• If w belongs toP̄0 = P0 ∩ vn, theny′ = y, u′ = u+ 〈u|w〉v0, v′ = v+ 〈v|w〉v0. It fol-
lows:

µ′(g) = µ(g) + 〈u(g)|w〉.

9.2.2. Triviality of b
Assume the existence of some elementγ0 of Γ for whichb(γ0) �= 0. Then, being invari-

ant by a non-trivial translation, the intervalI = π1(S̃) must be the wholeQ1. According
to Corollary 8.3, it follows that S̃ intersect every fiber ofπ0. Remember now that we
assume here the existence of a parabolic elementγ1 in Γ , and Lemma 7.1: select the
base pointx0 in S̃ and consider the pointsx of Mn admitting infinitely manyγ1-iterates
causally related tox0. At one hand, according to the proof ofLemma 7.1, suitablex are
the points for which〈p2(x) + p(τ)|x0〉 is positive, thusx can be selected up to∆0; in
particular, it can be selected iñS. On the other hand, since they both belong to theΓ -
invariant hypersurfacẽS, noΓ -iterate ofx can be causally related tox0. We thus obtained a
contradiction.

9.2.3. The purely unipotent case
We have just proved that the morphismb is trivial, i.e., the action ofΓ onQ1 is trivial.

This case cannot arise when the initial spacelike hypersurface is compact. Indeed,π1 is then
Γ -invariant, inducing a submersion fromSontoR.

Modifying the coordinate system, we can assume that 0 belongs toI = π1(S̃). According
to point (3) above,Γ acts freely and properly discontinuously onP̄0 × {0}-observe that this
action is the Euclidean action defined throughλ(Γ ). According to Bieberbach’s theorem,
up to finite index,Γ acts effectively by translations on some affine subspaceŪ0 × {0} ⊂
P̄0 × {0}. In particular, everyu(γ) belongs to the direction of̄U0. But this observation
works for anyt ∈ I: there is some affine subspaceŪt × {t} ⊂ P̄0 × {t} on which the action
of α(γ) has the expression:

α(γ)(z, t) = (z+ u(γ) + tv(γ), t)

Whenzbelongs tōUt . It follows that the action of everyλ(γ) on the linear space spanned
by all theŪt is unipotent; sincēU0 is themaximalλ(Γ )-unipotent subspace, it must contain
everyŪt . Hence, everyv(γ) belongs toŪ0: Ūt does not depend ont.
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In the coordinate systemMn ≈ R ⊕ P̄0 ⊕ R, consider the subspaceU = R ⊕ Ū0 ⊕ R.
It is Γ -invariant, and the expression of the action ofL(γ) − id onU is:

(L(γ) − id)(x, z, y) = (−〈v(g)|z〉 − 1
2y|v(g)|2, z+ yv(g),0)

This action is unipotent. On the other hand,U is timelike. Thanks toLemma 5.5,
and since the result we are proving is up to linear twisted products, we can as-
sume thatU is the entire Minkowski space, i.e.,Γ is contained in the abelian group
A(v0).

Since the action ofΓ on P̄0 × {0} is effective,u : Γ → P̄0 is injective. We can thus
parameterizeΓ by its u-translation vectors. Then, ifE is the linear space spanned by the
u-translation vectors, there is a linear mapT from E into P̄0 such that:

α(u)(z, y) = (z+ u+ yT (u), y).

Moreover,Γ is isomorphic toZk. In particular, it is abelian:

µ(γ) + µ(γ ′) − 〈u(γ ′)|v(γ)〉 = µ(γγ ′) = µ(γ ′γ) = µ(γ ′) + µ(γ) − 〈u(γ)|v(γ ′)〉.

It follows, for everyu, u′ in E:

〈u|T (u′)〉 = 〈u′|T (u)〉.

The causality domainU(u) is then the open set formed by the points (x, z, y) for which
u+ yA(u) �= 0. The intervalI ′ (remember point (2)) is a connected component of the set
{y ∈ Q1 ≈ R/u+ yA(u) �= 0 ∀u ∈ Γ }.

Denote byy−,y+ the extremities (possibly infinite) of the intervalI = π1(S̃). Remember
that we assume herey− < 0 < y+. Wheny± are both finite, we change the coordinates so
thaty− = −y+.

Proposition 9.3. At least one of the extremitiesy± is finite. If they are both finite then,
reducing as above to the casey− = −y+, for every u in E we have:

|y+T (u)| ≤ |u|.

If y+ = +∞, then for every u in E:

〈u|T (u)〉 ≥ −y−|T (u)|2.

If y− = −∞, then for every u in E:

〈u|T (u)〉 ≤ −y+|T (u)|2.

Remark 9.4. When all elements ofΓ are nonlinear unipotent isometries,Ω(S̃) is the entire
Minkowski space. Then, according toProposition 9.3, I andI ′ are not equal.
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Proof of 9.3. Consider two elementsX = (x, y, z) andX′ = (x′, y′, z′) of S̃, and any ele-
mentγ = g(u,v,µ) ofΓ (by definition,v = T (u)). We want to evaluate the norm ofγpX−X′:
the first observation is thatµ(γp) = pµ(γ) + (p(1− p))/2〈u|v〉. Therefore:

γp(x, y, z) = (x+pµ(γ) + 1
2p(1− p)〈u|v〉 − p〈z|v〉 − 1

2yp
2|v|2, y, z+ pu+ ypv).

The leading term forp increasing to infinity of the Minkowski norm ofγpX−X′ is:

p2(|u|2 + (y + y′)〈u|v〉 + yy′|v|2).

Since noγ-iterate ofX can be in the causal future ofX′, this term must be positive
for every y, y′ in I. Since at least one element ofΓ is parabolic, i.e., it has a nonzero
v-component, it follows immediately thatI cannot be the entire real line. Wheny± are
both finite,y− = −y+, the limit casey = y+, y′ = y− provides the required inequality for
u = u(γ). This inequality extend to anyu in E sinceu(Γ ) is a lattice ofE.

Wheny+ = +∞, the non-negativity of the leading term for increasingy andy′ = y−
proves the required inequality foru = u(γ). Once again, the cocompactness ofu(Γ ) in E
completes the proof.

Finally, the symmetric casey− = −∞ admits a similar proof. �
Proposition 9.5. The mapT : E → P̄0 can be extended to a linear map̂T : P̄0 → P̄0
satisfying the same properties, i.e.:

• T̄ is symmetric:

〈u|T (u′)〉 = 〈u′|T (u)〉.

• If y− = −y+:

|y+T̂ (u)| ≤ |u|.

• If y+ = +∞:

〈u|T̂ (u)〉 ≥ −y−|T̂ (u)|2.

• If y− = −∞:

〈u|T̂ (u)〉 ≤ −y+|T̂ (u)|2.

Proof. Consider first the casey+ = +∞. Let F be the image ofT, andF⊥ the orthogonal
of F. Let K be the kernel ofT, andK⊥ the orthogonal ofK insideE. From the equalities
0 = 〈T (u)|u′〉 = 〈u|T (u′)〉 for u in E and u′ in K, we see thatK ⊂ F⊥. On the other
hand, foru in E ∩ F⊥, we have−y−|T (v)|2 ≤ 〈u|T (u)〉 = 0. Therefore,K = E ∩ F⊥: the
linear spacēP0 is the orthogonal sumK⊥ ⊕ F⊥. For u in K⊥ andu′ in F⊥, we define
T̂ (u+ u′) = T (u). The linear map̂T has the required properties.
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The proof for the casey− = −∞ is completely similar. The last case to consider isy− =
−y+. We can assume without loss of generality thaty+ = 1. We decomposeT (u) as the
orthogonal sumT0(u) + B(u), whereT0(u) belongs toE andB(u) toE⊥. LetB′ : E⊥ → E

the dual ofB: it is uniquely defined by〈B′(v)|u〉 = 〈v|B(u)〉 for everyv in E⊥ and everyu
in E.

By hypothesis,T0 is symmetric and its sup-norm is less than or equal to 1. Therefore, it
is diagonalizable overR, and its eigenvalues have all absolute values less than or equal to
1. For every symmetric linear mapZ : E⊥ → E⊥, defineT̂Z(u+ v) = (T0(u) + B′(v)) +
(B(u) + Z(v)). This is a symmetric extension ofT, and we want to prove thatZ can be
selected so that̂TZ has norm less than or equal to 1, i.e., that its eigenvalues have all
absolute values less than or equal to 1.

But the existence of such an extension is precisely the content of Parrot’s lemma (see
Appendix C of[1]—we are pleased to thank D. Serre who indicated to us this theorem and
this reference). �

SinceT̂ is symmetric, there is an orthonormal basise1, . . . , en−2 of P̄0 such thatT (ei) =
λiei. For any collection of real numbers (µ1, . . . , µn−2), we define a mapϕ : P̄0 ≈ R

n−2 →
A(v0) by ϕ(

∑
tiei) = g such thatu(g) =∑

tiei, v(g) = T̂ (u(g)) =∑
λitiei andµ(g) =∑

tiµi +
∑

λi(ti(1− ti)/2). It is easy to check that for any (µ1, . . . , µn−2),ϕ is a morphism.
Let γ1, γ2, . . . , γk be generators ofΓ ≈ Zk. We can select (µ1, . . . , µn−2) so that

for every j, if u(γj) =
∑

tiei, then v(γj) = T (u(γj)) =
∑

λitiei andµ(γj) =
∑

tiµi +∑
λi(ti(1− ti)/2). Then, for every elementγ of Γ , we haveϕ(u(γ)) = γ: the image ofϕ is

a Lie abelian subgroupA of A(v0) containingΓ and isomorphic tōP0 ≈ R
n−2 considered

as a group.
Observe that there is a vectorw in P̄0 such that for everyi, 〈ui|w〉 = −µi − λi/2.

Therefore, according toRemark 9.2, after a coordinate change, we can actually assume
µi = −λi/2. In this coordinate system, theµ-component ofϕ(

∑
tiei) is −∑(λi/2)t2i .

In summary, we have proven thatΓ is precisely as described in the introduction for the
definition of unipotent space–times. Moreover, our choice ofT̂ in Proposition 9.5guaran-
tees that̃S is contained in a connected componentΩ of Ω(A)-cf. the introduction for the
definition ofΩ(A). But in the proof ofProposition 8.12, we observed that every lightlike
geodesic contained iñM intersectS̃: hence,D(M̃) is contained inπ−1

0 (π0(S̃)). It follows
thatD(M̃) is contained inΩ, i.e., thatM can be embedded in the unipotent space–time
Γ \Ω. This achieves the proof ofTheorem 1.1in the nonloxodromic parabolic case.

10. The loxodromic case

It is the case whereΓ contains a loxodromic elementγ0. We can then define the convex
domainΩlox(Γ ) which is the interior of the intersection between all theU(γ) for loxodromic
elements ofΓ .

Lemma 10.1. If Γ contains loxodromic elements, Ωlox(Γ ) = Ω(Γ ).

Proof. The inclusionΩ(Γ ) ⊂ Ωlox(Γ ) is obvious. The reverse inclusion would fail if for
some nonloxodromic elementγ0 we hadΩlox(Γ ) ∩ U(γ0) �= Ωlox(Γ ). Such aγ0 cannot be
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tangent parabolic or spacelike elliptic since in these casesU(γ0) is the entire Minkowski
space. According toRemark 8.9, this γ0 is actually linear parabolic. Then,U(γ0) is the
complement of some lightlike hyperplaneP(γ0). Thus, since we assumeΩlox(Γ ) ∩ U(γ0) �=
Ωlox(Γ ), the convex domainΩlox(Γ ) contains someγ0-invariant nonempty open subsetU
of P(γ0). Now,P(γ0) contains an isotropic direction∆0 such that for every elementx of
P(γ0) \∆0, the convex hull of theγ0-orbit ofx is a complete lightlike line∆ (with direction
∆0). If x is selected inU \∆0, ∆ is contained in the convex domainUlox(Γ ). But this
is impossible since the achronal domainU(γ) of a loxodromic element cannot contain an
entire lightlike affine line. �

Lemma 10.2. Ω(S̃) is a regular convex domain.

Proof. The achronal domain of a loxodromic elementγ admits two connected component,
one future complete, the other, past complete: we denote them respectively byU+(γ),
U−(γ). SinceΩ(S̃) is connected, it is contained in only one of these components. Up to
time reversing isometries, we can assume that there is some loxodromic elementγ0 for
whichΩ(S̃) ⊂ U+(γ0).

Claim: for every loxodromic elementγ, Ω(S̃) is contained inU+(γ).
Indeed, assume the existence of someγ1 for whichΩ(S̃) ⊂ U−(γ1). Then,Ω(S̃) must

be contained inU+(γ0) ∩ U−(γ1). But the reader can easily check that in all cases, there is
always a timelike line avoiding the intersectionU+(γ0) ∩ U−(γ1). This is a contradiction
with Corollary 8.2.

It follows thatΩ(S̃) is the interior of the intersection of allU+(γ) whenγ describes all
the loxodromic elements ofΓ . Denote byΛ0 the set of repulsive fixed points of loxodromic
elements ofΓ in J: we have just proved thatΩ(S̃) is the interior of the future complete
convex domain defined byΛ0. Denote now byΛ(Γ ) the closure ofΛ0 inJ. Then, according
to Lemma 4.6, Ω(Λ(Γ )) containsΩ(S̃): in particular, it is nonempty. Then, according to
Lemma 4.8, Λ(Γ ) is future regular, i.e.,Ω(Λ(Γ )) is a future complete regular convex
domain. The lemma follows then fromLemma 4.9. �

Corollary 10.3. The action ofΓ on Ω(S̃) is free and properly discontinuous, and the
quotient spaceM(S) = Γ \Ω(S̃) is a Cauchy-complete globally hyperbolic space–time.

Proof. According toPropositions 10.2 and 4.16, the action ofΓ on Ω(S̃) is properly
discontinuous. By definition ofΩ(S̃), this action is free. The corollary thus follows from
Proposition 4.16. �

We may naively think that we achieved the proof of the main theorem, but some point is
missing:M(S) is not a Cauchy-hyperbolic space–time if the linear partΓ is not discrete in
SO0(1, n− 1).

10.1. The elementary case

Here, we consider the case where, up to finite index,L(Γ ) preserves some isotropic
direction∆0. Sinceγ0 is loxodromic, it admits a second isotropic fixed direction: we denote
this fixed direction by∆1. As in the nonloxodromic case, there are induced actions ofΓ on
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Q0, Q1 the quotient spaces ofMn by ∆ and∆⊥
0 . The difference with the nonloxodromic

case is that the induced action onQ0 is now given by:

α(γ)(z, y) = (R(γ)(z) + u(γ) + yv(γ),ea(γ)y + b(y)).

The isometryγ is loxodromic if and only ifa(γ) �= 0.
We choose as origin ofQ1 the fixed point ofγ0. Then,b(γ0) = 0, andU(γ0) does not

contain the lightlike hyperplaneπ−1
1 (0). SinceI = π1(S̃),I ′ = π1(Ω(S̃)) areρ(γ0)-invariant

intervals ofR, they are both the interval ]−∞,0[ or ]0,+∞[; let say,I = I ′ =]0,+∞[.
Moreover,b(γ) = 0 for everyγ in Γ .

Let Γ0 be the kernel ofa: this is a discrete group of isometries ofMn. For any element
γ ′ of Γ0, and any elementγ of Γ , the conjugateγγ ′γ−1 is given by:

α(γγ ′γ−1)(z, y) = (R(γ)R(γ ′)R(γ)−1(z) + R(γ)(u(γ ′)) + e−a(γ)v(γ ′), y).

Sinceα(Γ ′) is discrete, it follows that everyv(γ ′) = 0 since we can choose asγ a
loxodromic element for whicha(γ) �= 0. In other words, elements ofΓ0 are all elliptic.

The nondiscrete partΓ nd
0 of Γ0 has finite index inΓ0 and is preserved by conjugacy

underΓ : the unique maximalΓ nd
0 -unipotent subspaceU is preserved byΓ .

Now, we observe thatΓ0 preserves̃S, has no loxodromic elements, and acts trivially
on Q1: we recover the purely unipotent case. In particular,U is timelike. Since it isΓ -
invariant, up to a linear twisted product, we can assume thanks toLemma 5.5thatU is the
entire Minkowski space and that elements ofΓ nd

0 are spacelike translations.
Consider now the action ofL(Γ ) on the hyperbolic spaceHn−1: sinceL(Γ nd

0 ) is
trivial, L(Γ0) is a finite group. Therefore,H, the set ofL(Γ0)-fixed points, is aL(Γ )-
invariant totally geodesic subspace ofHn−1. It is not reduced to a point since the
isotropic direction∆0 defines aL(Γ0)-fixed point in ∂Hn−1. Now, L(Γ0) acts trivially
on H, and for any elementγ of Γ , the commutatorγγ0γ

−1γ−1
0 is in the kernel of

a, i.e., in Γ0. Therefore,L(γ) is an isometry of the hyperbolic spaceH commuting
with the loxodromic elementL(γ0): hence, it preserves thetwo fixed points ofL(γ0)
in ∂H. In other words, there is another isotropic direction∆1 preserved by the entire
groupL(Γ ).

Let P be the spacelike direction∆⊥
0 ∩∆⊥

1 , andE the quotient space ofMn by P. Then,
Γ acts naturally on the 2-planeE, preserving the Lorentzian metric induced from the met-
ric on Mn. Denote byπP : Mn → E the quotient map. We parameterizeP by coordi-
natesx, y so that the induced Lorentzian metric is dx dy, and that the fixedγ0-invariant
lightlike hyperplanes areπ−1

P (x = 0), π−1
P (y = 0). Then, since the linear parts of loxo-

dromic elements ofΓ preserve the same isotropic directions thanL(γ0), the achronal do-
main of any loxodromic elementγ of Γ is π−1

P ({(x− x(γ))(y − y(γ)) < 0}) for some real
numbersx(γ), y(γ). According toLemma 10.1, it follows thatΩ(Γ ) = Ωlox(γ) has also
the expressionπ−1

P ({(x− x0)(y − y0) < 0}). Finally, sinceΩ(Γ ) is γ0-invariant, we have
x0 = y0 = x(γ) = y(γ) = 0.

Thenπ−1
P (0) is aΓ -invariant spacelike subspace on whichΓ acts by isometries. In other

words, there is a coordinate system (x, z, y) onMn such that the Lorentzian quadratic form
is xy + |z|2 (where|| is an Euclidean norm) and such that elements ofΓ acts according to



160 T. Barbot / Journal of Geometry and Physics 53 (2005) 123–165

the law:

γ(x, z, y) = (e−a(γ)x,R(γ)(z) + u(γ),ea(γ)y).

As in Corollary 8.4, we see that the action onπ−1
P (0) is free and properly discontinuous.

Once more, an appropriate use of Bieberbach’s theorem leads to the conclusion: the quotient
spaceM(S) = Γ \Ω(S̃) is a linear twisted product over a Misner space–time.

10.2. The non-elementary case

The last case to consider is the case where no finite index subgroup ofL(Γ ) fixes an
isotropic direction.

Apply Theorems 5.1, 5.2: the non-discrete partΓnd is nilpotent; and there is a unique
maximalU on which the action ofΓnd is unipotent. Being unique,U is also preserved byΓ .

Proposition 10.4. Uis timelike.

Proof. If it is lightlike, then it contains a unique isotropic direction which isΓ -invariant:
contradiction.

If U is spacelike, then, according toCorollary 8.4, a finite index subgroup ofΓ is abelian.
Now, an abelian subgroup of SO0(1, n− 1) fixes a pair of isotropic directions, except if it
consists only one elliptic elements fixing one and only one timelike vectorv0. The first case
is excluded by hypothesis, and the second case is forbidden too, since in this casev0 has to
be fixed by the entire groupΓ , and, thus, to belong toU, which is a contradiction with the
definition ofU. �

We denote byLU (γ) the linear part of the restriction ofγ toU.

Proposition 10.5.LU (Γ ) is discrete.

Proof. Since the action ofΓ onMn/U is a linear Euclidean action, the closure ofLU (Γ )
in SO0(U) is the restriction toU of the closure ofL(Γ ) in SO0(1, n− 1). Hence, the neutral
component of this closure is contained inLU (Γnd), proving that this closure is nilpotent and
its elements does not have elliptic parts: it contains only hyperbolic or unipotent elements.
In particular, if it is not trivial, its center contains a parabolic or hyperbolic element. If it
contains a parabolic elementγ0, the unique isotropic direction ofγ0 is LU (Γ )-invariant,
and thusL(Γ )-invariant. Contradiction.

If the center contains a hyperbolic elementγ0, then the two isotropic fixed points of
L(γ0) has to be exchanged by every element ofL(Γ ). Contradiction. �

In other words,LU (Γ ) is a non-elementary Kleinian group. Actually, thanks to
Proposition 5.5, we can restrict our study to the caseU = Mn (be aware thatΩlox(Γ )
is obviously equal toU⊥ ⊕Ωlox(Γ|U), whereΓ|U denotes the restriction ofΓ toU).

During the proof ofLemma 10.2, we actually proved thatΩ(S̃) is the regular convex
domain defined by the closure of repulsive points of loxodromic elements ofΓ . Therefore, it
coincides precisely with the regular convex domainΩ+(Λ(ρ)) appearing inDefinition 4.18.

Hence, it seems that we have all elements in hand to conclude, but one of them is missing:
L might be noninjective! LetN be its kernel: its elements are translations, and the translation



T. Barbot / Journal of Geometry and Physics 53 (2005) 123–165 161

vectors form a lattice in some spacelike linear spaceE. The action ofΓ onN by conjugacy is
linear; more precisely, the conjugacy byγ maps the translation by vectorv to the translation
by vectorL(γ)v. Hence, it extends to an isometric action on the Euclidean spaceE, which
moreover preserves the latticeN. Hence, replacingΓ by some finite index subgroup, we can
assume that this action is trivial. Hence, 0→ N→ Γ → L(Γ ) → 0 is a central extension.

Considerp : Mn → Q, the quotient ofMn by the spacelike subspaceE:Q is naturally
equipped with a Minkowski metric, and there is ap-equivariant action ofΓ on Q which
reduces to a (nonlinear) action ofL(Γ ) ≈ Γ/N. L(Γ ) is still a discrete group of isometries
of Q, but now with injective linear part morphism.

On the other hand, since it is convex, and since it is preserved by translations inN,
the regular convex domainΩ(S̃) is preserved by translations by vectors inE. Therefore,
denotingΩ(L(Γ )) = p(Ω(S̃)), we haveΩ(S̃) = p−1(Ω(L(Γ ))). Finally, sinceΩ(S̃) is the
regular convex domain defined inMn by the closure of repulsive fixed points ofL(Γ ), it
should be clear to the reader thatΩ(L(Γ )) is actuallyin the Minkowski space Ethe regular
convex domainΩ(Λ(L(Γ ))) as defined for the definition of Cauchy-hyperbolic space–times
(Definition 4.18). Hence, the quotientM(L) = L(Γ ) \Ω(L(Γ )) is a Cauchy-hyperbolic
space–time.

The quotient mapp induces now an isometric fibration ¯p : M(S) → M(L), with fibers
isometric to the torusE/N.

Conclusion: M(S) = Γ \Ω(S̃) is a twisted product of a Cauchy-hyperbolic space–time
by a flat torus.

11. Summary of the proof

The proof ofTheorem 1.1is quite intricate, and maybe not so easy to follow. Thus, we
consider useful to summarize here these proofs, and to add some comments.

11.1. Proof of Theorem 1.1

We start with a Cauchy-complete GH space–timeM, with complete Cauchy-surfaceS.
In Section 8, we proved that the developing mapD : M̃ → Mn is injective, identifying
M̃ with an open domain contained in a open convex domainΩ(S̃), this last domain be-
ing ρ(Γ )-invariant, whereρ : Γ → Isom(M )n is the holonomy morphism. Moreover, it
is proved thatρ is injective:Γ is then identified with its imageρ(Γ ). These preliminar-
ies would conclude ifM(S) = Γ \Ω(S̃) was a model space–time, but this is not true in
general.

In Section 9, we consider the case whereΓ has no loxodromic elements. We prove
the folkloric fact that the linear partL(Γ ) is then elementary, i.e., preserves (up to finite
index) a point inH̄n−1 (this fact is maybe most known when the group is discrete). Then,
we prove that, ifM is not a linear twisted product over a translation space–time, then it
is a linear twisted product over some space–timeM ′ for which the holonomy group is an
abelian group acting unipotently. All the difficulty is to extend this holonomy group to an
abelian Lie groupA of unipotent elements acting suitably onΩ(S̃) (Proposition 9.5). It is
then straightforward to prove thatΩ(S̃) is contained in a connected componentΩ of Ω(A).
Therefore,M ′ embeds isometrically in the unipotent space–timeΓ \Ω.
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The nonloxodromic case being ruled out, we assume then the existence of a loxodromic
element. We prove that the convex domainΩ(S̃) is a regular convex domain, so that the
quotientM(S) is indeed a space–time, containing an embedded copy ofM. We consider
once more a dichotomy:

- eitherL(Γ ) (up to index 2) preserves a point in∂Hn−1: M(S) is then a linear twisted
product over a Misner space–time (Section 10.1).

- eitherL(Γ ) is nonelementary: then,M(S) is a linear twisted product over a space–time
satisfying the same properties, with the additional requirement that the linear part of the
holonomy group is discrete. We then prove that it admits a fibration by flat tori over a
Cauchy-hyperbolic space–time (Section 10.2).

11.2. Proof of Theorem 1.2

Reconsider the proof above whenM is assumed Cauchy-compact. A fundamental ob-
servation is that in a GH space–time, every closed spacelike hypersurface is necessarily
a Cauchy surface, hence, every GH space–time containing an embedded copy ofM is
necessarily Cauchy-compact.

It follows that nontrivial linear twisted products destroy Cauchy-compactness, thus the
“up to linear twisted products” appearing inTheorem 1.1can be erased in the Cauchy-
compact version 1.2. As observed previously, unipotent space–times cannot be Cauchy-
compact; thus, together with their finite coverings, they disappear in the Cauchy-compact
version.

Remark 11.1. In Remark 8.13, we claimed that for maximal Cauchy-compact space–
times,Ω(S̃) is the Cauchy domain of̃S. This should be obvious to the reader for the case of
translation space–times, and in the case of Misner space–times and twisted products over
standard space–times, it follows from[8] andLemma 10.2.

11.3. Absolute maximality

Actually, proofs ofTheorems 1.1 and 1.2are not complete. Indeed, they also include the
following statements:

(i) Translation space–times, Misner space–times, and twisted products of Cauchy-
hyperbolic space–times by flat tori are absolutely maximal, and any unipotent space–
time can be tamely embedded in some absolutely maximal unipotent space–time.

(ii) Any maximal Cauchy-compact GH space–time is not only embedded in a finite quotient
of a translation space–time, a Misner space–time or the twisted product of a standard
space–time by a flat torus, it is actuallyisometricto one of them.

Actually, (ii) follows from (i), since, as noted previously, closed spacelike hypersurfaces
in GH space–times are always Cauchy hypersurfaces. In other words, maximal Cauchy-
compact GH space–times are also absolutely maximal.
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Let us prove (i). To avoid repetitions, we callmodel space–timesthe space–times listed
in (i). Let M0 be one of them, and consider an isometric embeddingf : M0 → M in some
GH space–timeM. Then, according to 1.1, some finite coveringM ′ of M tamely embeds in
some model space–timeM1. Hence, some finite coveringM ′

0 of M0 embeds isometrically
in M1. By construction, everyMi is the quotient of some open domain convexΩi of Mn

by the holonomy groupΓi. The embedding ofM ′
0 in M1 lifts to an isometric embedding

F : Ω0 → Ω1. As any locally defined isometry between open subsets ofMn, F extends
to a bijective isometry of the entire Minkowski space: we thus can assume that it is the
identity map. Therefore,Ω0 ⊂ Ω1. Moreover, the fundamental groupΓ ′

0 ⊂ Γ0 of M ′
0 is

then identified with a subgroup ofΓ1.
Now, remember thatF (=id) is the lifting of theembeddingof M ′

0 intoM1. Hence, if the
inclusionΩ0 ⊂ Ω1 is actually surjective, thenΓ ′

0 = Γ1, andf is a surjective embedding.
Thus, our remaining task is to establishΩ0 = Ω1, except for the unipotent space–times.
If M0 is a translations space–time: then,Ω0 is the entire Minkowski space. The equality

Ω0 = Ω1 follows.
If M0 is loxodromic(Misner or twisted product of a Cauchy-hyperbolic space–time by a

flat torus): then,Γ1 contains also loxodromic elements. By construction,Ωi is the regular
convex domain associated to repulsive fixed points of loxodromic elements ofΓi. Hence,
Ω1 ⊂ Ω0 follows from the inclusionΓ ′

0 ⊂ Γ1.
Let us now restrict our discussion on the remaining case, i.e. the case whereM0 is

unipotent. Then, sinceΩ1 containsΩ0 which is a domain inMn between two degenerate
hyperplanes, or the half-space defined by a degenerate hyperplane, it is obvious thatM1 is
either a translation space–time, or an unipotent space–time. But the first case is excluded
sinceΓ1 contains parabolic elements (the parabolic elements ofΓ0). Hence,M1 is actually
an unipotent space–time.

In Section 9.2.3, we defined the following objects associated to unipotent space–times:

- the spacelike linear spaceEi generated by theu-components of elements ofΓi,
- a linear mapTi : Ei → R

n−2 expressing thev-components of elements ofΓi from their
u-components.

Moreover,Ωi has the formπ−1
1 (Ii) whereπ1 is the projection map alongΓi-invariant

degenerate hyperplanes fromMn onto a one-dimensional linear spaceQi.
Consider first the case whereI0 is a bounded interval ]y−, y+[. As previously, we assume

without loss of generality the equalityy+ = −y−. In Proposition 9.3, we proved that the
operator norm ofT0 is less than or equal to 1/y+. Denote byY+ the inverse of this operator
norm. Then,Proposition 9.5implies thatT extends to some symmetric operatorT̂ , which
provides some abelian Lie groupA containingΓ0 and for whichΩ = π−1

1 (] − Y+, Y+[) is
a connected component ofΩ(A).

Then, sincey+ ≤ Y+, M0 tamely embeds in the quotientΓ0 \Ω. On the other hand,
we claim that this last quotient is absolutely maximal. Indeed, reconsider all the reasoning
above, but now assumingM0 = Γ0 \Ω, i.e.,y+ = Y+, or, equivalently,Ω0 = Ω. Consider
π1(Ω1) =]y′−, y′+[. SinceΓ1 containsΓ0, Proposition 9.3implies−Y+ ≤ y′− andy′+ ≤ Y+,
i.e., the equalityΩ0 = Ω1 establishing the absolute maximality ofM0.

The case whereI0 is not bounded can be treated in a similar way.
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12. CMC foliations

Let M be a Cauchy-compact space–time. ACMC foliation on M is a codimension 1
foliation ofM for which all leaves are spacelike and compact, with constant mean curvature.
A CMC time functionis a submersiont : M → R such that:

- t is increasing in time (i.e., its restriction to any future oriented timelike curve is increas-
ing);

- every fiber t−1(s) is a hypersurface with constant mean curvature, the CMC value
beings.

Observe that in any space–time admitting a CMC time function, the fibers of this time
function are the only CMC hypersurfaces (see e.g.[3]). In particular, the CMC time
function, if it exists, is unique, and defines moreover the unique CMC foliation on the
space–time.

Theorem 12.1. Every (flat) maximal Cauchy-compact GH space–time admits a unique
CMC foliation. It admits a CMC time function if and only if it is finitely covered by a Misner
space–time, or the twisted product of a standard space–time by a flat torus; the CMC time
function then takes value in] −∞,0[ (future complete case) or ]0,+∞[ (past complete
case). Cauchy-compact translations space–times do not admit CMC time functions, and
any CMC spacelike closed hypersurface is a leaf of the unique CMC foliation.

Proof. The case of standard space–times is treated in[2]. It is also obvious that twisted
products by flat tori preserves the existence of CMC time functions.

In the two elementary cases (translation space–times and Misner space–times) there is
an abelian Lie groupA of dimensionn− 1 acting by isometries, freely, properly discon-
tinuously, with closed spacelike orbits: these orbits are the leaves of a CMC foliation. In
the case of Misner space–times, the orbits ofA on the universal covering are product of
spacelike hyperbolae inM2 with Euclidean spaces: there are thus obviously the fibers of
some CMC time function.

In the case of translation space–times, the CMC value of every leaf is 0 (they are actually
totally geodesic). LetI be the quotient space of the action ofA. For any closed spacelike
CMC hypersurfaceS, the projection ofS into I ≈ R is a compact interval. It means thatS
is tangent to at least twoA-orbitsO+, O−, so thatS is contained in the future ofO− and
in the past ofO+. The max principle for CMC hypersurfaces then implies that the constant
mean value ofS is bigger than the CMC value ofO+ and less than the CMC value ofO−.
SinceO± are both totally geodesic, the CMC value forS is actually 0, i.e.S is maximal.
Then,Slifts as a maximal spacelike hypersurfaceS̃ in Mn: according to[11], S̃ is a parallel
spacelike hyperplane. In other words,S is an orbit ofA. �

Acknowledgements

Work partially supported by CNRS and ACI “Structures géoḿetriques et trous
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